CS/ECE 374: Algorithms & Models of
Computation

Shortest Paths: DAG and
Floyd-Warshall

Lecture 18
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The Crucial Optimality Substructure
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Shortest distance problems

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + £(v, u)]
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Shortest distance problems

Optimality substructure:
dist(s, u) = min,cn() [dist(s, v) + €(v, u)]
Bellman-Ford: d(u) = min,cinw) [d(v) + €(v, u)]

@ If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.
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Shortest distance problems

Optimality substructure:

dist(s, u) = min,cn) [dist(s, v) + €(v, u)]

Bellman-Ford: d(u) = min,cinw) [d(v) + €(v, u)]

@ If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

@ Initialize d(s) = 0, all d(u) = oo, converge to the fixed point.
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Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra:  d(u) = min,cinw),vex [d(v) + £(v, u)]
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Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra:  d(u) = min,cinw),vex [d(v) + £(v, u)]

@ v in X is known to have d(v) = d(s, v)
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Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra:  d(u) = min,cinw),vex [d(v) + £(v, u)]

@ v in X is known to have d(v) = d(s, v)
© Only update u adjacent to X. Each edge is only updated once.
© A good evaluation order saves a lot of work. We will see it again

with DAG.
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Shortest distance problems

Why didn't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?
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Shortest distance problems
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Bellman-Ford? d(u) = min, [d(v) + d(v, u)]?
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Shortest distance problems

Why didn't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

Bellman-Ford? d(u) = min, [d(v) + d(v, u)]?

© We will need to compute d(v, u), for all v, when we only need
distances from s. Extra work.

@ Will be useful for computing all-pair shortest distance.
Floyd-Warshall

CS/ECE 374
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Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DA Gs
© No cycles and hence no negative length cycles!

© Can order nodes using topological sort
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Algorithm for DAGs

©@ Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q@ Let s = vy, vp,Vj11,...,V, be a topological sort of G
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Algorithm for DAGs

© Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q@ Let s = vy, vr,Vj11,...,V, be a topological sort of G

Observation:
@ shortest path from s to v; cannot use any node from
Vitly e o9 Vn
© can find shortest paths in topological sort order.
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = c©
d(s,s) =0

for i=1 to n—1 do
for each edge (vj,v;) in Out(v;) do
d(s, vj) = min{d(s, v;j), d(s, vi) + £(vi, vj) }

return d(s,:) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm!
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All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths (or costs). For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.

© Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, v) is its
length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + nlog n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:

O(nm). M ~_ 0 (Y\Y). mmnl, D(ﬂ?)
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Find shortest paths for all pairs of nodes.
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

©Q Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

@ Non-negative lengths. O(nm log n) with heaps and
O(nm + n?log n) using advanced priority queues.

@ Arbitrary edge lengths: O(n’m). |
y edag g Oqu_) I‘me\,nl
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

©Q Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

@ Non-negative lengths. O(nm log n) with heaps and
O(nm + n?log n) using advanced priority queues.

@ Arbitrary edge lengths: O(n?m).
Can we do better?
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Optimality substructure

Why don't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?
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Optimality substructure

Why don't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

What is a smart recursion?
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A naive recursion

R
LOZ\—IOO[(JO
loe 0 O | ©
20 2 O =@ o
D oaww o0 9
Jomom =22 )
L — |

L 52 +1o5| = |43
LI A3 l=ove
L——VJ +y=a | = ©°

CS/ECE 374 April 6, 2021 16 /22



A naive recursion

Running Time: O(n*), Space: O(n?).
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A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).
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A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).

Q It's wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.
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A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).

Q It's wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

@ |dea: Restrict the set of intermediate nodes.
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i, j, 0)
dist(i, j, 1)
dist(i, j, 2)
dist(i, j, 3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

100

dist(i, j, 0)
dist(i, j, 1)
dist(i, j, 2)
dist(i, j, 3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i,j,3) =
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) =
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5

(Vi) Vo]
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For the following graph, dist(i, j, 2) is...
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All-Pairs: Recursion on index of intermediate nodes

dist(i, k, k — 1) dist(k,j, k — 1)

dist(i, 7, k — 1)

Not e |<
dist(i, j, k — 1)

dist(i, k, k — 1) + dist(k, j, k — 1)
nie |
Base case: dist(i,j,0) = £(i,j) if (i,j) € E, otherwise co

dist(i, j, k) = min {
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k — 1) < 0 then
G has a negative length cycle containing k and dist(i, j, k) = —oo.

Recursion below is valid only if dist(k, k, k — 1) > 0. We can
detect this during the algorithm or wait till the end.

dist(i, j, k — 1)

dist .7 .7k = . . . ] ]
st g k) = min {dlst(l, k,k —1) + dist(k,j, k — 1)
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do /

dist(i, j, k) = min d’,St('_ oy k= 1), , _
dist(i, k, k — 1) + dist(k,j, k —1) <—
for i=1 to n do

if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do

dist(i,j, k) = min {

for i =1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time:
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do

dist(i,j, k) = min {

for i =1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time: O(n®), Space: O(n?).
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An Application to make
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Make /Makefile

@ | know what make/makefile is.
@ |do NOT know what make/makefile is.
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make Utility [Feldman]

© Unix utility for automatically building large software applications
© A makefile specifies

@ Object files to be created,
@ Source/object files to be used in creation, and
© How to create them
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An Example makefile

project: main.o utils.o command.o
cc -0 project main.o utils.o command.o

main.o: main.c defs.h
cC —-C main.c

utils.o: utils.c defs.h command.h
cc -c utils.c

command.o: command.c defs.h command.h
cCc —-c command.c
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makefile as a Digraph

main.c
main.o

\>
utils.i;:>><::::::' \\\\\\\\\\\\A

defs.h » utils.o » project

commangi;:>x<:::::\* ///////////l
e N

command. o

/

command.c
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Computational Problems for make

Is the makefile reasonable?

If it is reasonable, in what order should the object files be
created?

If it is not reasonable, provide helpful debugging information.

If some file is modified, find the fewest compilations needed to
make application consistent.
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Algorithms for make

Is the makefile reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

If some file is modified, find the fewest compilations needed to
make application consistent.

® Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.
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Application to Currency Trading
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Why Negative Lengths?

Several Applications

© Shortest path problems useful in modeling many situations — in
some negative lengths are natural

© Negative length cycle can be used to find arbitrage opportunities
in currency trading

© Important sub-routine in algorithms for more general problem:
minimum-cost flow
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Negative cycles

Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

© Is there an arbitrage opportunity?

© Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example: | |
© 1 Chinese Yuan — 0.1116 Euro  1hus, if exchanging 1 $ —

B Yuan — Euro — $, we get:
© 1 Euro =1.3617 US dollar 0.1116 « 1.3617 *« 7.1 =

© 1 US Dollar = 7.1 Chinese Yuan. 1.07896%.
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to J via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, ki) X exch(ky, ka) ... X exch(kp,j) units of j.
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to J via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, k;) X exch(ky, kz) ... X exch(kp,j) units of j.

Create currency trading directed graph G = (V, E):
@ For each currency i there is a node v; € V
@ E = V X V: an edge for each pair of currencies
@ edge length £(v;, v;) =
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, k;) X exch(ky, kz) ... X exch(kp,j) units of j.

Create currency trading directed graph G = (V, E):
© For each currency i there is a node v; € V
@ E = V X V: an edge for each pair of currencies
© edge length £(v;, v;) = — log(exch(i,j)) can be negative
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, ki) X exch(ky, k2) ... X exch(kp,j) units of j.
Ed

Create currency trading directed graph G = (V, E):

@ For each currency i there is a node v; € V

@ E = V X V: an edge for each pair of currencies

@ edge length £(v;, v;) = — log(exch(i,j)) can be negative

|
Exercise: Verify that
© There is an arbitrage opportunity if and only if G has a negative
length cycle.
© The best way to convert currency i to currency j is via a
shortest path in G from i to j. If d is the distance from i to j
then one unit of i can be converted into 279 units of .
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Reducing Currency Trading to Shortest Paths

Math recall - relevant information

Q log(ay *ay*--+*xay) =logay + logas + -+ - + log a.
Q@ logx >0ifandonlyif x > 1.
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