CS/ECE 374: Algorithms & Models of
Computation

Shortest Paths: DAG and
Floyd-Warshall

Lecture 18

CS/ECE 374 1 April 6, 2021 1/22

Part |

The Crucial Optimality Substructure

CS/ECE 374 April 6, 2021 2/22

Shortest distance problems

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + £(v, u)]

CS/ECE 374 April 6, 2021 3/22

Shortest distance problems

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Bellman-Ford: d(u) = min,cinw) [d(v) + €(v, u)]

CS/ECE 374 April 6, 2021 3/22

Shortest distance problems

Optimality substructure:
dist(s, u) = min,cn() [dist(s, v) + €(v, u)]
Bellman-Ford: d(u) = min,cinw) [d(v) + €(v, u)]

@ If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

CS/ECE 374 April 6, 2021 3/22

Shortest distance problems

Optimality substructure:

dist(s, u) = min,cn) [dist(s, v) + €(v, u)]

Bellman-Ford: d(u) = min,cinw) [d(v) + €(v, u)]

@ If v is on the shortest path of u, and d(v) = dist(s, v), then
d(u) = dist(s, u) in the next iteration.

@ Initialize d(s) = 0, all d(u) = oo, converge to the fixed point.

CS/ECE 374 April 6, 2021 3/22

16 / 36

i
o\
o
N
i
m
[}
<

S = C—>h—oo

_7{-—‘90&\—‘>0\

CS/ECE 374 April 6, 2021 422

Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra: d(u) = min,cinw),vex [d(v) + £(v, u)]

CS/ECE 374 April 6, 2021 5/22

Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra: d(u) = min,cinw),vex [d(v) + £(v, u)]

@ v in X is known to have d(v) = d(s, v)

CS/ECE 374 April 6, 2021 5/22

Parsimonious updates of Dijkstra

Optimality substructure:

dist(s, u) = min,cn() [dist(s, v) + €(v, u)]

Dijkstra: d(u) = min,cinw),vex [d(v) + £(v, u)]

@ v in X is known to have d(v) = d(s, v)
© Only update u adjacent to X. Each edge is only updated once.
© A good evaluation order saves a lot of work. We will see it again

with DAG.

April 6, 2021 5/22

CS/ECE 374

Shortest distance problems

Why didn't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

CS/ECE 374 April 6, 2021 6/22

Shortest distance problems

Why didn't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

Bellman-Ford? d(u) = min, [d(v) + d(v, u)]?

CS/ECE 374 April 6, 2021 6/22

Shortest distance problems

Why didn't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

Bellman-Ford? d(u) = min, [d(v) + d(v, u)]?

© We will need to compute d(v, u), for all v, when we only need
distances from s. Extra work.

@ Will be useful for computing all-pair shortest distance.
Floyd-Warshall

CS/ECE 374

April 6, 2021 6/22

Part ||

Shortest Paths in DAGs

CS/ECE 374 April 6, 2021 7/22

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.

CS/ECE 374 April 6, 2021 8/22

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DA Gs
© No cycles and hence no negative length cycles!

© Can order nodes using topological sort

CS/ECE 374 April 6, 2021 8/22

Algorithm for DAGs

©@ Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q@ Let s = vy, vp,Vj11,...,V, be a topological sort of G

CS/ECE 374 April 6, 2021 9/22

Algorithm for DAGs

© Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q@ Let s = vy, vr,Vj11,...,V, be a topological sort of G

Observation:
@ shortest path from s to v; cannot use any node from
Vitly e o9 Vn
© can find shortest paths in topological sort order.

CS/ECE 374 April 6, 2021 9/22

Algorithm for DAGs

for i=1 to n do
d(s,v;) = c©
d(s,s) =0

for i=1 to n—1 do
for each edge (vj,v;) in Out(v;) do
d(s, vj) = min{d(s, v;j), d(s, vi) + £(vi, vj) }

return d(s,:) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm!

CS/ECE 374 April 6, 2021 10/ 22

Part ||

All Pairs Shortest Paths

CS/ECE 374 April 6, 2021 11 /22

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths (or costs). For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.

© Find shortest paths for all pairs of nodes.

CS/ECE 374 April 6, 2021 12 /22

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Given nodes s, t find shortest path from s to t.

© Given node s find shortest path from s to all other nodes.

CS/ECE 374 April 6, 2021 13/22

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, v) is its
length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + nlog n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:

O(nm). M ~_ 0 (Y\Y). mmnl, D(ﬂ?)

(UIUC) CS/ECE 374 13 April 6, 2021 13 /22

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Find shortest paths for all pairs of nodes.

CS/ECE 374 April 6, 2021 14 /22

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

©Q Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

@ Non-negative lengths. O(nm log n) with heaps and
O(nm + n?log n) using advanced priority queues.

@ Arbitrary edge lengths: O(n’m). |
y edag g Oqu_) I‘me\,nl

CS/ECE 374 April 6, 2021 14 /22

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

©Q Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

@ Non-negative lengths. O(nm log n) with heaps and
O(nm + n?log n) using advanced priority queues.

@ Arbitrary edge lengths: O(n?m).
Can we do better?

CS/ECE 374 April 6, 2021 14 /22

Optimality substructure

Why don't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

CS/ECE 374 April 6, 2021 15 /22

Optimality substructure

Why don't we use

dist(s, u) = min, [dist(s, v) + dist(v, u)] ?

What is a smart recursion?

CS/ECE 374 April 6, 2021 15 /22

A naive recursion

R
LOZ\—IOO[(JO
loe 0 O | ©
20 2 O =@ o
D oaww o0 9
Jomom =22)
L — |

L 52 +1o5| = |43
LI A3 l=ove
L——VJ +y=a | = ©°

CS/ECE 374 April 6, 2021 16 /22

A naive recursion

Running Time: O(n*), Space: O(n?).

CS/ECE 374 April 6, 2021 17 /22

A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).

CS/ECE 374 April 6, 2021 17 /22

A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).

Q It's wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

CS/ECE 374 April 6, 2021 17 /22

A naive recursion

Running Time: O(n*), Space: O(n?).

Worse than Bellman-Ford: O(n’m), when m = O(n?).

Q It's wasteful because the intermediate nodes can be any node.
As a result, we compute the same path many times.

@ |dea: Restrict the set of intermediate nodes.

CS/ECE 374 April 6, 2021 17 /22

All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i, j, 0)
dist(i, j, 1)
dist(i, j, 2)
dist(i, j, 3)

CS/ECE 374 April 6, 2021 18 /22

All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

100

dist(i, j, 0)
dist(i, j, 1)
dist(i, j, 2)
dist(i, j, 3)

CS/ECE 374 April 6, 2021 18 /22

All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i,j,3) =

CS/ECE 374 April 6, 2021 18 /22

All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) =

CS/ECE 374 April 6, 2021

All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, vo, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5

(Vi) Vo]

CS/ECE 374 April 6, 2021 18 /22

For the following graph, dist(i, j, 2) is...

CS/ECE 374 April 6, 2021 19/22

All-Pairs: Recursion on index of intermediate nodes

dist(i, k, k — 1) dist(k,j, k — 1)

dist(i, 7, k — 1)

Not e |<
dist(i, j, k — 1)

dist(i, k, k — 1) + dist(k, j, k — 1)
nie |
Base case: dist(i,j,0) = £(i,j) if (i,j) € E, otherwise co

dist(i, j, k) = min {

CS/ECE 374 April 6, 2021

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k — 1) < 0 then
G has a negative length cycle containing k and dist(i, j, k) = —oo.

Recursion below is valid only if dist(k, k, k — 1) > 0. We can
detect this during the algorithm or wait till the end.

dist(i, j, k — 1)

dist .7 .7k = . . .]]
st g k) = min {dlst(l, k,k —1) + dist(k,j, k — 1)

CS/ECE 374 April 6, 2021 21/22

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do /

dist(i, j, k) = min d’,St('_ oy k= 1), , _
dist(i, k, k — 1) + dist(k,j, k —1) <—
for i=1 to n do

if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

CS/ECE 374 April 6, 2021 22 /22

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do

dist(i,j, k) = min {

for i =1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time:

CS/ECE 374 April 6, 2021 22 /22

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j =1 to n do
dist(i,j,0) = £(i,j) (x £(i,j) =00 if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j =1 to n do

dist(i,j, k) = min {

for i =1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time: O(n®), Space: O(n?).

CS/ECE 374 April 6, 2021 22 /22

CS/ECE 374: Algorithms & Models of
Computation

Graph Modeling

L ecture

CS/ECE 374 1 April 6, 2021 1/13

Part |

An Application to make

CS/ECE 374 April 6, 2021 2/13

Make /Makefile

@ | know what make/makefile is.
@ |do NOT know what make/makefile is.

CS/ECE 374 April 6, 2021 3/13

make Utility [Feldman]

© Unix utility for automatically building large software applications
© A makefile specifies

@ Object files to be created,
@ Source/object files to be used in creation, and
© How to create them

CS/ECE 374 April 6, 2021 4/13

An Example makefile

project: main.o utils.o command.o
cc -0 project main.o utils.o command.o

main.o: main.c defs.h
cC —-C main.c

utils.o: utils.c defs.h command.h
cc -c utils.c

command.o: command.c defs.h command.h
cCc —-c command.c

CS/ECE 374 April 6, 2021 5/13

makefile as a Digraph

main.c
main.o

\>
utils.i;:>><::::::' \\\\\\\\\\\\A

defs.h » utils.o » project

commangi;:>x<:::::* ///////////l
e N

command. o

/

command.c

CS/ECE 374 April 6, 2021 6/13

Computational Problems for make

Is the makefile reasonable?

If it is reasonable, in what order should the object files be
created?

If it is not reasonable, provide helpful debugging information.

If some file is modified, find the fewest compilations needed to
make application consistent.

CS/ECE 374 April 6, 2021 7/13

Algorithms for make

Is the makefile reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

If some file is modified, find the fewest compilations needed to
make application consistent.

® Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.

CS/ECE 374 April 6, 2021 8/13

Part |l

Application to Currency Trading

CS/ECE 374 April 6, 2021 9/13

Why Negative Lengths?

Several Applications

© Shortest path problems useful in modeling many situations — in
some negative lengths are natural

© Negative length cycle can be used to find arbitrage opportunities
in currency trading

© Important sub-routine in algorithms for more general problem:
minimum-cost flow

CS/ECE 374 April 6, 2021 10/13

Negative cycles

Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

© Is there an arbitrage opportunity?

© Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example: | |
© 1 Chinese Yuan — 0.1116 Euro 1hus, if exchanging 1 $ —

B Yuan — Euro — $, we get:
© 1 Euro =1.3617 US dollar 0.1116 « 1.3617 *« 7.1 =

© 1 US Dollar = 7.1 Chinese Yuan. 1.07896%.

(UIUC) CS/ECE 374 11 April 6, 2021 11/13

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to J via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, ki) X exch(ky, ka) ... X exch(kp,j) units of j.

CS/ECE 374 April 6, 2021 12 /13

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to J via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, k;) X exch(ky, kz) ... X exch(kp,j) units of j.

Create currency trading directed graph G = (V, E):
@ For each currency i there is a node v; € V
@ E = V X V: an edge for each pair of currencies
@ edge length £(v;, v;) =

CS/ECE 374 April 6, 2021

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, k;) X exch(ky, kz) ... X exch(kp,j) units of j.

Create currency trading directed graph G = (V, E):
© For each currency i there is a node v; € V
@ E = V X V: an edge for each pair of currencies
© edge length £(v;, v;) = — log(exch(i,j)) can be negative

CS/ECE 374 April 6, 2021 12 /13

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies ki, k>, . .., ki then one unit of i yields
exch(i, ki) X exch(ky, k2) ... X exch(kp,j) units of j.
Ed

Create currency trading directed graph G = (V, E):

@ For each currency i there is a node v; € V

@ E = V X V: an edge for each pair of currencies

@ edge length £(v;, v;) = — log(exch(i,j)) can be negative

|
Exercise: Verify that
© There is an arbitrage opportunity if and only if G has a negative
length cycle.
© The best way to convert currency i to currency j is via a
shortest path in G from i to j. If d is the distance from i to j
then one unit of i can be converted into 279 units of .

(UIUC) CS/ECE 374 12 April 6, 2021 12/13

Reducing Currency Trading to Shortest Paths

Math recall - relevant information

Q log(ay *ay*--+*xay) =logay + logas + -+ - + log a.
Q@ logx >0ifandonlyif x > 1.

CS/ECE 374 April 6, 2021 13/13

