Pre-lecture brain teaser

For each of the following languages is the language decidable?

- $A_{DFA} = \{\langle B, \mathbf{w} \rangle | B \text{ is a DFA that accepts } \mathbf{w} \}$
- $A_{NFA} = \{\langle B, \mathbf{w} \rangle | B \text{ is a NFA that accepts } \mathbf{w} \}$

CS/ECE-374: Lecture 24 - Decidability

Lecturer: Nickvash Kani

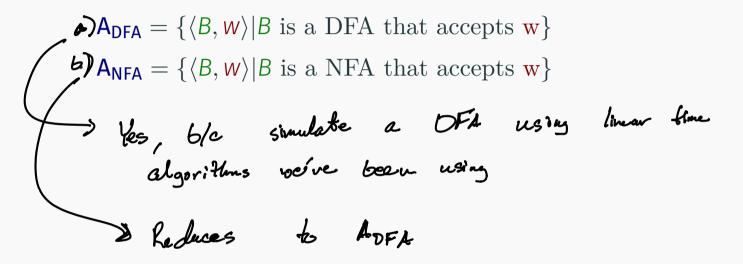
Chat moderator: Samir Khan

April 20, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

For each of the following languages is the language decidable?



Turing machines...

TM = Turing machine = program.

Reminder: Undecidability

Definition

Language $L \subseteq \Sigma^*$ is **undecidable** if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$. (Usually defined using TM not programs. But equivalent.

Reminder: Undecidability

Definition

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Reminder: Undecidability

Definition

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can

always stop and output

whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Definition

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is decidable.

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Definition

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is decidable.

Turing proved the following:

Theorem A_{TM} is undecidable.

The halting problem

A_{TM} is not TM decidable!

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Theorem (The halting theorem.) A_{TM} is not Turing decidable.

A_{TM} is not TM decidable!

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Theorem (The halting theorem.)

A_{TM} is not Turing decidable.

Proof: Assume A_{TM} is TM decidable...

. Proof by Contradiction

A_{TM} is not TM decidable!

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

Theorem (The halting theorem.)

A_{TM} is not Turing decidable.

Proof: Assume A_{TM} is TM decidable...

Halt: TM deciding A_{TM} . **Halt** always halts, and works as follows:

Halt
$$(\langle M, w \rangle) = \begin{cases} \text{accept } M \text{ accepts } w \\ \text{reject } M \text{ does not accept } w. \end{cases}$$

We build the following new function:

Flipper($\langle M \rangle$)

res \leftarrow (Halt($\langle M, M \rangle$))

if res is accept then

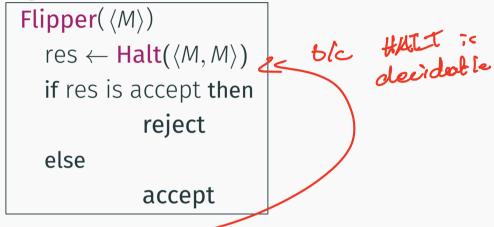
reject

else

accept

resed offuncise

We build the following new function:



Flipper always stops:

$$\mathbf{Flipper}\Big(\langle M\rangle\Big) = \begin{cases} \text{reject} & \textit{M} \text{ accepts } \langle M\rangle \\ \text{accept} & \textit{M} \text{ does not accept } \langle M\rangle \,. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding (**Flipper**). HALT (Plipper, (Flipper))

Run Flipper on itself:

$$\begin{aligned} & \text{Flipper}\Big(\left\langle \text{Flipper}\right\rangle\Big) = \begin{cases} & \text{reject} & \text{Flipper} \text{ accepts } \left\langle \text{Flipper}\right\rangle \\ & \text{accept} & \text{Flipper} \text{ does not accept } \left\langle \text{Flipper}\right\rangle. \end{cases} \end{aligned}$$

$$\mathbf{Flipper}\Big(\langle M\rangle\Big) = \begin{cases} \text{reject} & \textit{M} \text{ accepts } \langle M\rangle \\ \text{accept} & \textit{M} \text{ does not accept } \langle M\rangle \,. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding (**Flipper**). Run **Flipper** on itself:

$$\begin{aligned} & \text{Flipper}\Big(\left\langle \text{Flipper}\right\rangle\Big) = \begin{cases} & \text{reject} & \text{Flipper} \text{ accepts } \left\langle \text{Flipper}\right\rangle \\ & \text{accept} & \text{Flipper} \text{ does not accept } \left\langle \text{Flipper}\right\rangle. \end{cases} \end{aligned}$$

This is absurd. Ridiculous even!

$$\mathbf{Flipper}\Big(\langle M\rangle\Big) = \begin{cases} \text{reject} & \textit{M} \text{ accepts } \langle M\rangle \\ \text{accept} & \textit{M} \text{ does not accept } \langle M\rangle \,. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding (**Flipper**). Run **Flipper** on itself:

$$\begin{aligned} & \text{Flipper}\Big(\left\langle \text{Flipper}\right\rangle\Big) = \begin{cases} \text{reject} & \text{Flipper accepts } \left\langle \text{Flipper}\right\rangle \\ \text{accept} & \text{Flipper does not accept } \left\langle \text{Flipper}\right\rangle. \end{cases} \end{aligned}$$

This is absurd. Ridiculous even!

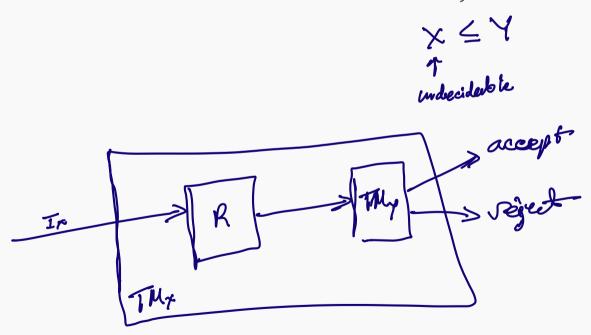
Assumption that Halt exists is false. \implies A_{TM} is not TM decidable.

Seed Idea of Decidability: Ath is undecidable

Reductions

Reduction

Meta definițion: Problem **X** reduces to problem **4**, if given a solution to **4**, then it implies a solution for **X**. Namely, we can solve **Y** then we can solve **X**. We will done this by $X \implies Y$.



Reduction

Meta definition: Problem **X** reduces to problem **B**, if given a solution to **B**, then it implies a solution for **X**. Namely, we can solve **Y** then we can solve **X**. We will done this by $X \implies Y$.

Definition

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

С

Trying to prove Y

Reduction

Meta definition: Problem **X** reduces to problem **B**, if given a solution to **B**, then it implies a solution for **X**. Namely, we can solve **Y** then we can solve **X**. We will done this by $X \implies Y$.

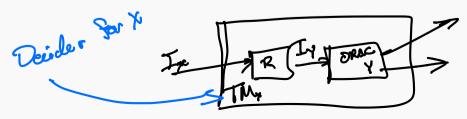
Definition

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Lemma

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle ORAC_Y for Y.

We will denote this fact by $X \implies Y$.



• Y: Problem/language for which we want to prove undecidable.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume *L* is decided by TM *M*.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem X using M.

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem X using M.
- Result in decider for X (i.e., A_{TM}).

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem X using M.
- Result in decider for X (i.e., A_{TM}).
- Contradiction X is not decidable.

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.

- Create a decider for known undecidable problem X using M.
- Result in decider for X (i.e., A_{TM}).
- Contradiction X is not decidable.
- Thus, L must be not decidable.

Reduction implies decidability

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The countrapositive...

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ stops on } w \right\}.$$

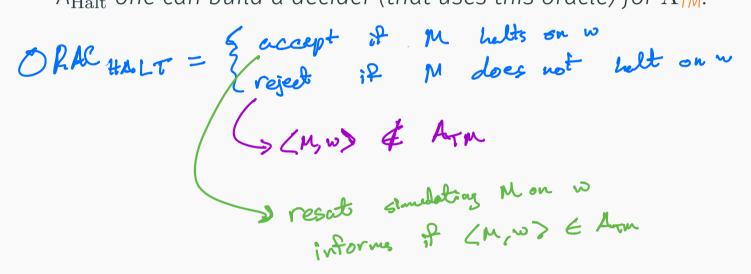
Similar to language already known to be undecidable:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

On way to proving that Halting is undecidable...

Lemma

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .



On way to proving that Halting is undecidable...

Proof. Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the A HALT TS following decider for A_{TM} . Another Decider - $A_{TM}(\langle M, w \rangle)$ $res \leftarrow ORAC_{Halt}(\langle M, w \rangle)$ // if M does not halt on w then reject. if res = reject then halt and reject. // M halts on w since res =accept. // Simulating M on w terminates in finite time. $res_2 \leftarrow Simulate M on w.$ return res₂.

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

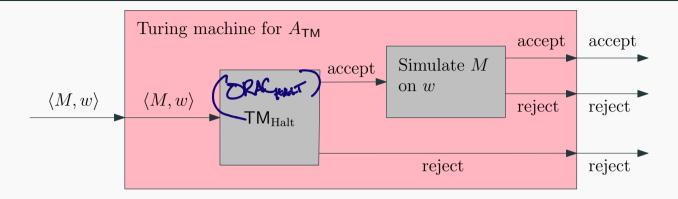
Theorem

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that $A_{\rm Halt}$ is decidable. As such, there is a TM, denoted by $TM_{\rm Halt}$, that is a decider for $A_{\rm Halt}$. We can use $TM_{\rm Halt}$ as an implementation of an oracle for $A_{\rm Halt}$, which would imply that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that $A_{\rm Halt}$ is undecidable.

The same proof by figure...



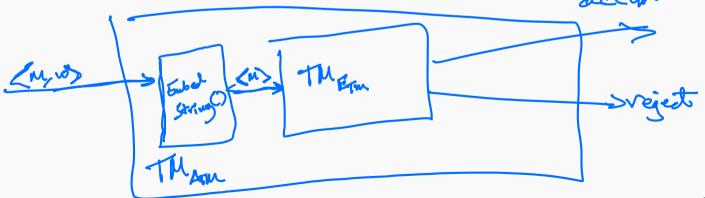
... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.

Emptiness

The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle \mathsf{M} \rangle \mid \mathsf{M} \text{ is a TM and } L(\mathsf{M}) = \emptyset \right\}.$
- TM_{ETM}: Assume we are given this decider for E_{TM}. Assume E_{TM} is
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.

Somehow make the second input (w) disappear.



The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle \mathsf{M} \rangle \mid \mathsf{M} \text{ is a TM and } L(\mathsf{M}) = \emptyset \right\}.$
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.
- Idea: hard-code w into M, creating a TM M_w which runs M on the fixed string w.
- TM M_w:
 - 1. Input = x (which will be ignored)
 - 2. Simulate M on w. hardcoded
 - 3. If the simulation accepts, accept. If the simulation rejects, reject.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- · What is $L(M_W)$? Mw (r) was accept to M does we reject.
- Since M_W ignores input x.. language M_W is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Emptiness is undecidable

Theorem

The language E_{TM} is undecidable.

- Assume (for contradiction), that E_{TM} is decidable.
- TM_{FTM} be its decider.
- Build decider Another Decider ATM for ATM.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)
\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle) \leftarrow M_w \text{ is } Z
r \leftarrow TM_{ETM}(\langle M_w \rangle). \qquad \qquad \emptyset
\text{if } r = \text{accept then}
\text{return reject}
// TM_{ETM}(\langle M_w \rangle) \text{ rejected its input}
\text{return accept}
```

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider-** A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider-A**_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider-** A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider-A**_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider-** A_{TM} on the input $\langle M, w \rangle$.

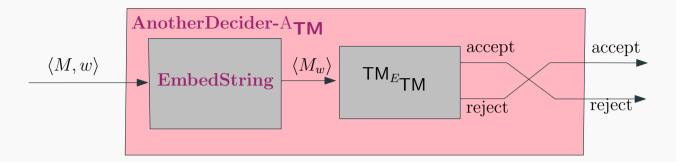
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider-A**_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.

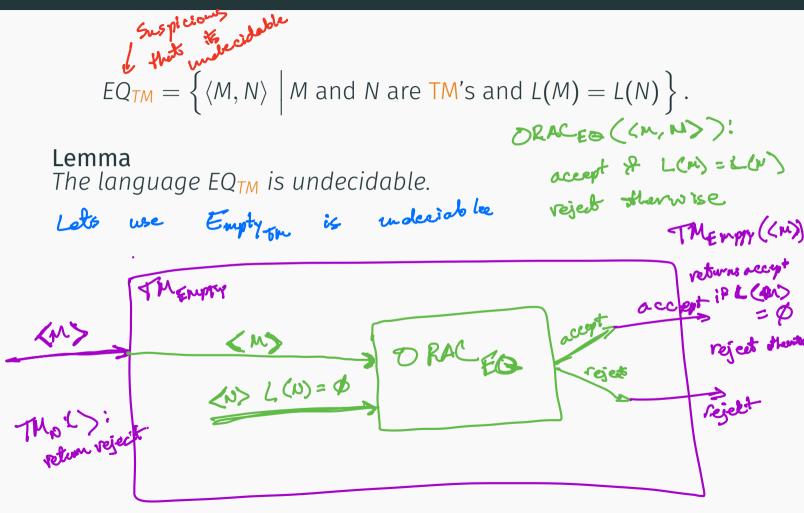
Emptiness is undecidable via diagram



AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Equality

Equality is undecidable



Scratch

Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for E_{TM} as follows:

TM R:

- 1. Input = $\langle M \rangle$
- 2. Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
- 3. Run **DeciderEqual** on $\langle M, T \rangle$.
- 4. If **DeciderEqual** accepts, then accept.
- 5. If **DeciderEqual** rejects, then reject.

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.
- Regularity language: Regular_{TM} = $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$.
- **DeciderRegL**: Assume TM decider for Regular_{TM}.
- Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is $w \in A_{TM}$) into a problem about whether some TM accepts a regular set of strings.

Scratch

• Given M and w, consider the following TM M'_w :

TM M'_W :

- (i) Input = x
- (ii) If x has the form $a^n b^n$, halt and accept.
- (iii) Otherwise, simulate M on w.
- (iv) If the simulation accepts, then accept.
- (v) If the simulation rejects, then reject.
- <u>not</u> executing $M'_{w}!$
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- If M accepts w, then any x accepted by M'_w : $L(M'_w) = \Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \ge 0\}$.

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{W} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

• If **DeciderRegL** accepts $\implies L(M'_{w})$ regular (its Σ^{*})

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_W \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_W \rangle).

return r
```

• If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider-A**_{TM} should accept $\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider-A**_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects \Longrightarrow $L(M'_w)$ is not regular \Longrightarrow $L(M'_w) = a^n b^n$

- $a^n b^n$ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_{W} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_{W} \rangle).

return r
```

- If **DeciderRegL** accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So **AnotherDecider-A**_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow AnotherDecider-A_{TM}$ should reject $\langle M, w \rangle$.

Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.