


Pre-lecture brain teaser

For each of the following languages is the language decidable?

* Apra = {(B,w)|B is a DFA that accepts w}
* Anra = {(B,w)|B is a NFA that accepts w}
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Pre-lecture brain teaser

For each of the following languages is the language decidable?

#)Apra = {(B,w)|B is a DFA that accepts w}
B) Anra = {(B,W)|B is a NFA that accepts w}
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Turing machines...

= Turing machine = program.
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Reminder: Undecidability

Definition . . . .
Language L C X* isqundecidable if no program P, given w € ¥*

as input, can always stop and output whether w € L or w ¢ L.
Acc"#’ ﬂz&cdr‘
(Usually defined using not programs. But equivalent.
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Reminder: Undecidability

Definition . . .
Language L C X* Is undecidable if no program P, given w € ¥*

as input, can

always stop......

whetherw e Lorw ¢ L.

(Usually defined using TM not programs. But equivalent.



Reminder: The following language is undecidable

Decide If given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M,W) |/\/l Isa TM and M accepts W} :
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Reminder: The following language is undecidable

Decide If given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M,W) |/\/l Isa TM and M accepts W} :

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w € ¥* whether or not
w e L.

A language that has a decider is decidable.
Turing proved the following:

Theorem, ...
Ay is undecidable.



The halting problem




Aty 1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts W}.

Theorem (The halting theorem.)
Aqy is not Turing decidable.
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Aty 1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts W}.

Theorem (The halting theorem.)
Aqy is not Turing decidable.

Proof: Assume Ay Is TM decidable...

Halt: TM deciding Ayy. Halt always halts, and works as follows:

X o e
”Y’M fo Yo proye-
accept M accepts w
Halt(%,wﬁﬂ P P

reject M does not accept w.



Halting theorem proof continued 1

We build the following new function:
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Halting theorem proof continued 1

We build the following new function:
Flipper((M))

.res - Halt((M,M)) b_ ble jfdm“‘*
If res Is accept then

reject
else

accept

=

Flipper always stops: ¥/

{reject M accepts (M)

Flipper((/\/l>> =

accept M does not accept (M).



Halting theorem proof continued 2

: reject M accepts (M)
Fllpper(</\/l>) =
accept M does not accept (M).

Flipper is a TM (duh!), and as such it has an encoding %Flipper)
. : : \sqper
Run Flipper on itself: JALT (PR 4

reject Flipper accepts (Flipper
Flipper((Flipper)){ : PP Pts (Flipper)

accept Flipper does not accept (Flipper).



Halting theorem proof continued 2

: reject M accepts (M)
Fllpper(</\/l>) =
accept M does not accept (M).

Flipper is a TM (duh!), and as such it has an encoding (Flipper).
Run Flipper on itself:

reject Flipper accepts (Flipper
Flipper((Flipper)){ : PP Pts (Flipper)

accept Flipper does not accept (Flipper).

This Is absurd. Ridiculous even!



Halting theorem proof continued 2

Flipper((/\/l>) =

reject M accepts (M)
accept M does not accept (M).

Flipper is a TM (duh!), and as such it has an encoding (Flipper).
Run Flipper on itself:

reject Flipper accepts (Flipper)
accept Flipper does not accept (Flipper).

Flipper( (Flipper)) — {

This Is absurd. Ridiculous even!

Assumption that#Halt exists Is false» — A,y is not TM

decidable. | .
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Reductions




Reduction

Y

Meta deﬁnitjgn: Problem X reduces to problem#, if given a
solution to &, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X — Y.
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Meta definition: Problem X reduces to problem B, if given a
solution to B, then it implies a solution for X. Namely, we can

solve Y then we can solve X. We will done this by X — Y.
/\

Definition _ . .
oracle ORAC for language L Is a function that receives as a
word w, returns TRUE < w € L.
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Meta definition: Problem X reduces to problem B, if given a
solution to B, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X — Y.

Definition . . .
oracle ORAC for language L Is a function that receives as a

word w, returns TRUE < w € L.

Lemma .
A language X reduces to a language Y, if one can construct a

M decider for X using a given oracle ORACy for Y.
We will denote this fact by X — .

\ﬂjﬁ“ﬂf |




Reduction proof technique

- Y: Problem/language for which we want to prove
undecidable.
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undecidable.

- Proof via reduction. Result in a proof by contradiction.
- L: language of .
- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using
M.

10



Reduction proof technique

- Y: Problem/language for which we want to prove
undecidable.

- Proof via reduction. Result in a proof by contradiction.
- L: language of .
- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using
M.

- Result in decider for X (i.e., Am).

10
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- L: language of .
- Assume L is decided by TM M.
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Reduction proof technique

- Y: Problem/language for which we want to prove
undecidable.

- Proof via reduction. Result in a proof by contradiction.
- L: language of . Ty _;@ )-f‘\ \
- Assume L is decided by TM M. [ TMs

- Create a decider for known undecidable problem X using
M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

o

- Thus, L must be not decidable.
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Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. If Y

IS decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X

reduces to Y, it follows that there is a procedure Tyy (i.e,
decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in Ty, by calls to T. The
resulting program Ty Is a decider and its language Is X. Thus X
is decidable (or more formally TM decidable). O]

1



The countrapositive...

Lemma
Let X and Y be two languages, and assume that X — Y. If X

IS undecidable then Y is undecidable.
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Halting




The halting problem

Language of all pairs (M, w) such that M halts on w:

AHalt = {(/\/I,vv> )/\/l Isa M and M stops on W}.

Similar to language already known to be undecidable:
Ay = {(/\/I,W> |/\/l Isa TM and M accepts W} .

Am'::);“m
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On way to proving that Halting is undecidable...

Lemma .
The language Ay reduces to Aqaie. Namely, given an oracle for

Amaie One can build a decider (that uses this oracle) for Ay.
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On way to proving that Halting is undecidable...

Proof. . .
Let ORACy,: be the given oracle for Ag.i:. We build the

following decider for Ay.
Anoth ecider-ATM(</\/I,vv>)

res < ORACHGH(W, W))

// if M does not halt on w then reject.
if res= reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <-Simulate M on w.

wﬂg return res,.

This procedure always return and as such its a decider for
AT/\/;. []

15



The Halting problem is not decidable

Theorem ' .
The language Ay.: 1S not decidable.

Proof.
Assume, for the sake of contradiction, that Ag, IS decidable.

As such, there is a TM, denoted by My, that Is a decider for
Afare. We can use TMpae @s an implementation of an oracle for
Anait, Which would imply that one can build a decider for Ay.
However, A1y Is undecidable. A contradiction. It must be that
Amare 1S undecidable. N

16



The same proof by figure...

Turing machine for Aty

accept | accept

A accept Simulate M
o ()T

reject reject
= ~T Mg ) )

(M, w)

: .
reject reject

. 1T Agare IS decidable, then A7y is decidable, which is
Impossible.

17



Emptiness




The language of empty languages

By = {<M> ‘/\/l isa TM and L(M) :(Z)}.
- TMerm: Assume we are given this decider for E7y. Assume &
. . decdoble.
- Need to use TMgry to build a decider for A.
- Decider for Ay Is given M and w and must decide whether
M accepts w.
- Restructure question to be about Turing machine having
an empty language.
- Somehow make the second input (w) disappear. ot

18



The language of empty languages

By = {<M> ‘/\/l isa TM and L(M) :(Z)}.

- TMerm: Assume we are given this decider for Eqy.

- Need to use TMgry to build a decider for A.

- Decider for Ay Is given M and w and must decide whether
M accepts w.

- Restructure question to be about
an empty language.

.. Somehow make the second input (w) disappear.

- Idea: hard-code w into M, creating a TM M,, which runs M
on the fixed string w.

« TM My o &
1. Input = x (which will be ignored)
2. Simulate M on W.A/”"“s‘”‘b
3. If the simulation accepts, accept. If the simulation rejects,

reject. e

Ing machine having



Embedding strings...

+ Given program (M) and input w...
+ ...can output a program (My).

- The program My, simulates M on w. And accepts/rejects
accordingly.

- EmbedString({M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).
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Embedding strings...

+ Given program (M) and input w...
+ ...can output a program (My).

- The program My, simulates M on w. And accepts/rejects
accordingly.

- EmbedString({M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

- What is L(My)?
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Embedding strings...

CundD

o e ~ '/

+ Given program (M) and input w...
+ ...can output a program (My).

- The program My, simulates M on w. And accepts/rejects
accordingly.

- EmbedString({M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

- What is L(My)? MC%,,M a{":” DN Y

- Since My, ignores input x.. language M,, Is either ¥* or (.
Itis ©* if M accepts w, and it is () if M does not accept w.

19



Emptiness is undecidable

Theorem . .
The language E7y is undecidable.

- Assume (for contradiction), that E7y is decidable.

5 | I QL’M% Aﬁ"rﬁ
TMgerm be Its decider. D & ¥ LoD

- Build decider AnotherDecider-Ayy foW %; L
AnotherDecider-Ay ({M, w
<MW> +— Embes trlng(<M,W>)C" Mo w i* {? W ses w

=(TMermd(Ma)). - b & m
MeoMS
if r — accep¥#then 4

) M. dne A
return reject
// TMem({My)) rejected its input
return accept

20



Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A, on the
input (M, w).

* If TMgrm accepts (My), then L(My,) Is empty. This implies
that M does not accept w. As such, AnotherDecider-A7y
rejects its input (M, w).

+ If TMgrm accepts (My), then L(My,) is not empty. This
implies that M accepts w. So AnotherDecider-A, accepts
(M, w).

21



Emptiness is undecidable...
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Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-A, on the
input (M, w).

* If TMgrm accepts (My), then L(My,) Is empty. This implies
that M does not accept w. As such, AnotherDecider-A7y
rejects its input (M, w).

+ If TMgrm accepts (My), then L(My,) is not empty. This
implies that M accepts w. So AnotherDecider-A, accepts
(M, w).

—> AnotherDecider-Ay is decider for Ay.
But A7y is undecidable...

..must be assumption that Eyy is decidable is false.

21



Emptiness is undecidable via diagram

AnotherDecider-ATM

accept accept
M, w M, >
< ) EmbedString <—l TMETM Py
reject reject

AnotherDecider-Ay, never actually runs the code for My,. It
hands the code to a function TMgry which analyzes what the

code would do if run it. So it does not matter that M, might go
Into an infinite loop.

22



Equality




Equality is undecidable

St p

[ ¥
EQrs = { (M, N) ‘/\/l and N are Th's and L(M) = L(N) }
PPA g (i, WO
Lemma Lem = Ll
The language EQry Is undecidable. scesgt ¥ OO >
. Mo}g lee ek WMo ise
Ll we By, w - TMe gy (499
. wfuo-&‘-‘f
TPt pcclgti? LC‘%
<Ny rejed o
PORAOS
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Proof.
Suppose that we had a decider DeciderEqual for EQry. Then

we can build a decider for Ey as follows:

T™M R:
1. Input = (M)
2. Include the (constant) code for a TM T that rejects all its
Input. We denote the string encoding T by (T).
3. Run DeciderEqual on (M, T).
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.

25



Regularity




Many undecidable languages

- Almost any property defining a TM language induces a
language which is undecidable.

- proofs all have the same basic pattern.
- Regularity language:

Regular;,, = {</\/I> ‘/\/l Isa TM and L(M) is regular}.
- DeciderRegL: Assume TM decider for Regular;,.

- Reduction from halting requires to turn problem about
deciding whether a TM M accepts w (i.e,, isw € Ayy) into a
problem about whether some TV accepts a regular set of
strings.

26
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Proof continued...

- Given M and w, consider the following TM M/ :
™ M,
(i) Input =x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

- not executing M/ !

- feed string (M7} into DeciderRegL

- EmbedRegularString: program with input (M) and w, and
outputs (M/,), encoding the program M/,

- If M accepts w, then any x accepted by M{,: L(M[,) = L*.

+ If M does not accept w, then L(M;,) = {a"b" | n > 0}.

28



Proof continued...

- a"b" is not regular...
- Use DeciderReglL on Mj, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for Ay as follows.
AnotherDecider-Ay ((M, w))

(M{,) + EmbedRegularString ((M, w))
r < DeciderRegL({M!,)).

return r

- If DeciderReglL accepts = L(M!,)) regular (its ¥*)

29



Proof continued...

- a"b" is not regular...
- Use DeciderReglL on Mj, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for Ay as follows.
AnotherDecider-Ay ((M, w))

(M{,) + EmbedRegularString ((M, w))
r < DeciderRegL({M!,)).

return r

- If DeciderReglL accepts = L(M!)) regular (its ¥*) = M
accepts w. So AnotherDecider-Ayy should accept (M, w).
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Proof continued...

- a"b" is not regular...
- Use DeciderReglL on Mj, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for Ay as follows.
AnotherDecider-Ay ((M, w))

(M{,) + EmbedRegularString ((M, w))

r < DeciderRegL({M!,)).

return r

- If DeciderReglL accepts = L(M!)) regular (its ¥*) = M
accepts w. So AnotherDecider-Ayy should accept (M, w).

- If DeciderRegl rejects = L(M],) is not regular =

L(M,) = a"b"

29



Proof continued...

- a"b" is not regular...
- Use DeciderReglL on Mj, to distinguish these two cases.

- Note - cooked M/, to the decider at hand.

- A decider for Ay as follows.
AnotherDecider-Ay ((M, w))
(M{,) + EmbedRegularString ((M, w))
r < DeciderRegL({M!,)).
return r
- If DeciderReglL accepts = L(M!)) regular (its ¥*) = M
accepts w. So AnotherDecider-Ayy should accept (M, w).
- If DeciderRegl rejects = L(M],) is not regular =
L(M],)) = a"b" = M does not accept w =—>
AnotherDecider-A7y should reject (M, w).
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The above proofs were somewhat repetitious...

Lz §o> | L e PY

.they imply a more general result.
79 wnelecioble

Theorem (Rice’s Theorem.) | . |
Suppose that L is a language of Turing machines; that is, each

word in L encodes a TM. Furthermore, assume that the
following two properties hold.

(a) Membership in L depends only on the Turing machine’s
language, l.e. if L(M) = L(N) then (M) € L < (N) € L.

(b) The set L is “non-trivial,” i.e. L # () and L does not contain
all Turing machines.

Then L Is a undecidable.
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