Entrance Survey

bit.ly/398entrance

CS398 Applied Cloud Computing

Professor Robert J. Brunner

Ben Congdon Tyler Kim

What this course is about

This is **Applied** Cloud Computing

- Very little theory
- Heavy focus on hands-on practice

What is this course *really* about?

Course Staff

Led by Professor Robert J. Brunner

Instructors: Ben Congdon, Tyler Kim

Course Assistants: Osmar Coronel, Sahil Bhatt

Google Cloud Platform

Goals & Design

Phase 1 Phase 2 Phase 3

MapReduce and Hadoop

MapReduce
Programming Paradigm,
Distributed File Systems,
Basic Cloud Parallelism

Spark and its Frameworks

Modern Data-Intensive Cloud Applications, Stream Processing, Graph Processing

Distributed Databases

NoSQL Databases, Key-Value Stores

Containerization and Infrastructure

Phase 4

Basic Cloud Security, Commercial Clouds, Docker, Terraform, Kubernetes

Prerequisites

- Proficiency in programming
- Comfortable with programming in Python
- CS225 or equivalent
- Comfortable using CLI and git

Contact the instructors if you aren't sure

Format

- Lectures
- Online Quizzes
- MPs
- Final Projects

Grading/Cutoffs

MPs	55%
Online Quizzes	15%
Final Project	30%

90%	A-
80%	B-
70%	C-
60%	D-

MP

- MP makes up 55% of the total grade.
- 10 MPs throughout the semester.
- Every MP is weighted equally (about ~6.11% per MP)
- Most MPs will run on the course cluster.
- MPs will distributed through course gitlab repository
- Must be done individually

AWS S3 Buckets Worker S3 Worker S3 Master Node S3 Spark Hadoop Worker YARN S3 Worker **AWS EMR Cluster** S3

MP

- MPs will be distributed over the course Gitlab
 - Individual student repos will be emailed this weekend

- We run anti-plagiarism scripts; don't cheat.
 - Standard acadmic code applies, see syllabus for details

- Don't post your solutions in "plain view"
 - We reserve the right to retroactively lower your grade

Online Quizzes

- Online Weekly Quizzes makes up 15% of your grade.
- Content will cover current week's lectures
- There will be 10-12 quizzes throughout the semester.
- All the quizzes are weighted equal.
- Must be done individually

Final "Team" Project

- 30% of total grade.
- Groups of 4 students
- More details/rubric will be discussed in class
- 10-15 minutes in-class presentation + peer grading.

Fastest-Growing Experiment Class at UIUC

276% growth from the past two semesters of CS199

Available Resources

Lectures

Lecture Slides will be posted online at course website (after the lecture)

Asking Questions

- Piazza: Your first stop for all questions (Search First)
- Office Hours: Hosted after each lecture.
- **Email Staff**: mailing list (don't email individual instructor/TA)

Communication

Gradebook: Moodle

Weekly Quizzes: Moodle

Forum: Piazza

Course Website: bit.ly/cs398cloud

MPs: GitLab + AWS/GCP

Email: cs398acc@lists.illinois.edu

Weekly Schedule

- Monday
 - Full-Lecture + Short Office Hours
 - MP Released after the lecture
- Tuesday
 - Previous Week's MP due at 11:59pm
 - Online Quiz Released
- Wednesday
 - Short lecture + Office Hours
- Friday
 - Online Quiz Due at 11:55pm

Office Hours

Hosted after each lecture.

Email us at any time, but see the Email Policy on the website.

How to get most out of CS398?

- Do the MPs on your own!
- Read the Relevant Reading Materials posted
- Do the quizzes on your own
- Go to the office hours
- Ask questions?

bit.ly/cs398cloud

Clouds

Motivations:

- Massive amounts of data
- Limitations of local compute resources
 - 1GB Dataset can be processed by your laptop, but what about 1 petabyte?
- Scalability
 - Every month your data scales by 2x. What now?
- Availability
 - Your customers / clients want 99.99% uptime

Clouds

Motivations:

- Distribution
 - Availability in multiple geographic regions

Using someone else's computers.

- Popularized by the introduction of Amazon's EC2 Service in 2006
- Connections to Distributed Systems and High-Performance Computing

Two Important Perspectives:

Access

- Gives developers the ability to use pooled computer resources
- Examples: Commercial Clouds (AWS, GCP, Azure),
 Cloud Security, Infrastructure, Orchestration

Two Important Perspectives:

Services

- Cloud utilities / frameworks / paradigms provide platforms for writing more complex applications
- Examples: MapReduce, Spark, Hadoop, Distributed
 Databases

What can we use clouds for?

- Data storage
- Data processing
- Arbitrary computation or data intensive tasks
- Machine learning
- Serving web traffic
- Hosting software/services

bit.ly/cs398cloud