CS 398 ACC Data Sourcing / Cleaning

Prof. Robert J. Brunner

Ben Congdon Tyler Kim

MP6

How's it going?

Due March 13th at 11:55 pm.

Submit your results as a PDF report on Moodle

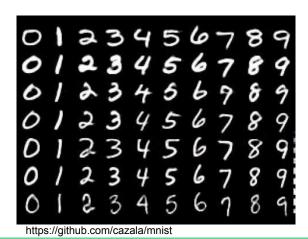
Final Project Reminders

- Project Proposal: Due this Friday, March 16th at 11:59pm
 - See requirements on the Course Website.
 - Submission through Moodle
 - Only one group member needs to submit
 - Make sure you list all group members and group name in the proposal

This Week

- Data Licensing / Sourcing
- Cleaning Data

Data Licensing


- Can you use any data?
- Check data sources for restrictions (commercial uses, foreign uses, etc)
- MIT License
 - Very permissive, as long as you keep the license and copyright
- GPLv2/v3
 - o If you use it, you must distribute the source of anything built with it
 - Must include copyright, license, link to the original, and details of your changes
 - o "Spreads virally", anything that uses it must then become GPL

Data Sources

- Data is everywhere! We can track things at scales that we never have before
- Refined Datasets
 - These are typically academic or governmental datasets that are released to the public
 - For the most part all the cases of missing values and parsing is done for you (the data is in a table-like format)
- Raw Data
 - This can be any data source:
 - Social media, sensor data, scientific data
 - You will need to clean the data in order to get it to a usable state
 - i.e. Missing values? Formatting? Non-normalized data?

Premade Dataset

- There are a lot of good data sources already
- If you can, use them instead of getting your own data
 - It has been cleaned; typically easier to download
 - There are other papers you can look to for examples of how they manipulated it
- You may want to combine datasets or fill in null values

Raw Data

How would you process your newsfeed?

Raw Data - Web Scraping

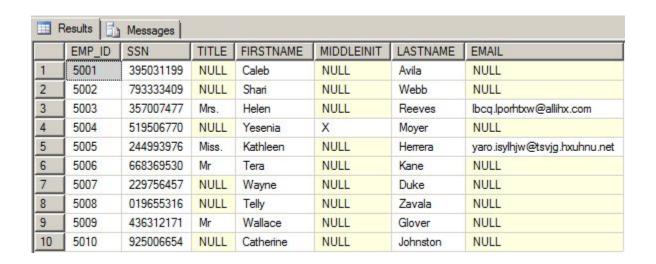
- Ideally you start with a headless browser and download a subset of the javascript objects/html from the page
- Once you have the objects, save them in some format that makes sense. This
 can be a CSV, a Table, what have you.
- You may need to do some HTML parsing in this case. Get yourself an HTML parser and write all the relevant files

20 Second Example

```
from bs4 import BeautifulSoup
soup = BeautifulSoup("""
   <html><body>
   Air Jordans
   Light up Sketchers
   <body></html>
   """, 'html.parser')
for item in soup.find all(attrs='shoe-item'):
   print(item.text)
```

Scraping Problems

- You may get rate limited
- You may get blocked
- You may be violating the law
- Whenever the HTML changes, your code immediately breaks


Data Cleaning

Why do we need to clean the data?

- Data could have:
 - Missing Values
 - Duplicate Values
 - Invalid Values
 - Useless Values
 - o Etc
- We need to make sure that the data that we give to the machine learning algorithm is as close to representative as possible

Why do we need to clean the data?

We usually want the data in some normalized format

Missing Values

- What can we do?
- We can drop data
 - Careful: this may skew our dataset, especially if we have a lot of missing values.
- We can make an educated guess of the values
 - Hard to do for categorical data
 - For numerical data:
 - Simple replacement with the mean
 - Sample a probability distribution to fill in the values (randomly)
- Some algorithms don't need all the values filled in
 - o In that case, we leave as is because we want to put as little of our bias into the data

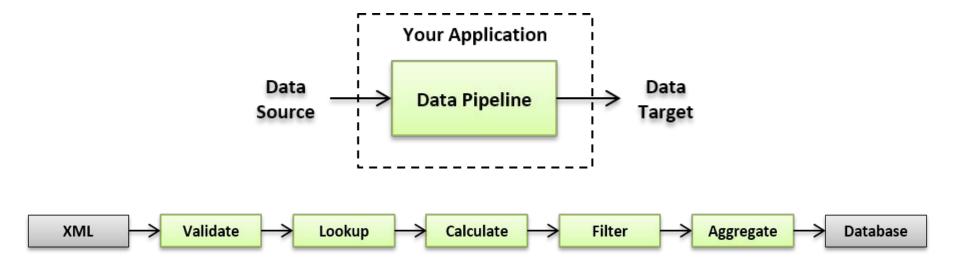
Missing Data Example

Missing values

PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15		s
2	1	1	female	38	1	9	PC 17599	71.2.33	C85	С
3	1	3	female	26	0	0	STON/O2. 3101282	7.925		s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	4	s
6	0	3	male	-	0	0	330877	8.4583		Q

Duplicated Data

- Simple answer:
 - Deduplicate the data
 - Can be challenging with very large datasets
- Pitfalls:
 - Duplicate data can have meaning
 - How do you determine duplicate data?
 - Exact match? Close match?


Duplicates Example

	UserName	Location	Salary	
	Suresh	KL	6000	
	Dasari	Hyderabad	4000	
	Prasanthi	Chennai	17000	
	Nagaraju	Hyderabad	40000	
	SureshDasari	Chennai	20000	
	SureshDasari	Chennai	20000	
	SureshDasari	Chennai	20000	
	Mahesh	Vijayawada	10000	
	Madav	Nagpur	15000	
*	NULL	NULL	NULL	

Invalid and Useless Values

- Problem domain species what is valid / useful
- Context matters significantly:
 - o i.e., age > 0
- For "useless" values
 - Keep them around, they may be useful later

Data processing pipelines

Final Destination

- Your data needs to be accessible to your processing framework
 - o i.e. It needs to be placed in HDFS, S3, MySQL, etc.
- For Hadoop / Spark:
 - HDFS has the "copyFromLocal" tool
- For SQL Databases:
 - Many tools available for loading data
 - Write your own queries/scripts to load data from some other source
- Data can be very large (> 1 PB):
 - Services like AWS Data Transfer (Snowball) exist to bulk transfer large amounts of data

Last Thing - (De)anonymization

- Personally Identifiable Information:
 - Usually good practice to censor / anonymize PII
 - I.e. For a patient/disease dataset:
 - Instead of using <name, disease>, use <name_id, disease_id>
 - Name_id can be a random UUID chosen for the given patient
- Malicious actors have incentive to deanonymize your data
 - Use cryptographically secure methods when anonymizing data

Wednesday

Project Proposal Help