
Infrastructure as Code
CS398 - ACC

Prof. Robert J. Brunner

Ben Congdon
Tyler Kim

MP7

How’s it going?

Final Autograder run:
- Tonight ~8pm
- Tomorrow ~3pm

● Due tomorrow at 11:59 pm.

● Latest Commit to the repo at the time will be graded.

● Last Office Hours today after the lecture until 7pm.

Infrastructure as Code

Problem Statement
● Distributed applications…

○ Are sensitive to how they are configured

■ i.e. Needs of a database server will be different than an web server

○ Are updated continuously

■ New code and patches are deployed daily, if not hourly

○ Will be operated by teams of humans

■ i.e. Possibility of “operator error”

○ Run on tens/hundreds/thousands of nodes

How do we deploy our Cloud infrastructure?
Approaches:

● Setup everything manually!
○ Does this scale? Clearly no.

How do we deploy our Cloud infrastructure?
Approaches:

● Setup everything manually!
○ Does this scale? Clearly no.

● Custom scripts
○ Use your cloud provider’s API to create machines
○ Programmatically SSH into the machine to do tasks
○ Does this scale? Maybe... but why reinvent the wheel?

How do we deploy our Cloud infrastructure?
Approaches:

● Setup everything manually!
○ Does this scale? Clearly no.

● Custom scripts
○ Use your cloud provider’s API to create machines
○ Programmatically SSH into the machine to do tasks
○ Does this scale? Maybe... but why reinvent the wheel?

● Infrastructure as Code
○ Declare your infrastructure setup in a specific format
○ Your IaC framework deploys/updates your cloud infrastructure!
○ Does this scale? Yes!

Infrastructure as Code Ideas

● Approaches to “writing down” cloud configuration:

○ Declarative: Define the target state of your cloud. What should the
eventual cloud deployment look like?

○ Imperative: Define how the configuration system should setup the
cloud. How should the system deploy your application?

○ Intelligent: Define relationships and constraints between services, and
the system will figure out how and what to update.

Infrastructure as Code Ideas

● Approaches to updating cloud configuration:

○ Push: A central server tells child servers their configuration

○ Pull: Child servers request configuration from a central server

● Ansible: Declarative/Imperative; Push

● Puppet: Declarative; Pull

● Chef: Imperative; Pull

● Salt: Declarative

● Terraform: Declarative/Intelligent; Push

Infrastructure as Code Solutions

Terraform

● Created by HashiCorp; Open source

● Cloud Platform Agnostic
○ Support for AWS, GCP, Azure, Kubernetes, Heroku, and a bunch more

● Stateful and environment aware
○ Internal resource graph used to create cloud resources in the correct

order
○ Internal state and configuration can be easily version-controlled

Terraform Resource Graph

https://github.com/hashicorp/terraform/issues/1997

Terraform Definitions

● Provider:
○ Interacts with a cloud service (i.e. GCP, AWS, Azure)
○ Affects change in a cloud service (i.e. creating/destroying resources)

using the service’s API

● Resource:
○ An infrastructure component
○ i.e. VMs, Networks, Containers, Hard Drives, Storage Buckets

Terraform Modules

● Terraform uses *.tf files for configuration
● Common semantics:

○ variables.tf
■ Hold variables that may change over the lifetime of the configuration
■ i.e. Instance sizing, database table names, etc.

○ main.tf
■ Import variables and any necessary modules.

○ Others (i.e. ec2.tf)
■ Service-specific configuration
■ Usually 1-file-per-service (i.e. one for EC2, and another for DynamoDB)

Terraform Syntax

● Basic configuration language that supports some interpolation, but is
generally declarative

● Useful to lookup and use examples
○ Many open-source Terraform templates are available

Terraform Syntax

Terraform Syntax

Variable

Variable Interpolation

Resource

Terraform Syntax

Resource Type
(Defined by Provider)

Resource Name
(Defined by You)

Terraform Commands

● terraform get
○ Downloads and updates local terraform modules

● terraform plan
○ Creates an execution plan to transform the state in your cloud to the state of your current

local configuration

● terraform apply
○ Runs the execution plan, and creates/updates/deletes resources in your cloud as necessary
○ Can be a destructive action if you’re not careful!

Terraform Use Cases

● Complex, Multi-Tiered Applications
○ Terraform modules are easily composable into complex architectures

● Temporary Environments
○ Useful for creating staging/testing environments
○ Can create identical infrastructure setup to production environment

● Deploying Across Multiple Cloud Providers
○ Terraform is platform agnostic
○ Similar configurations can be automatically replicated across clouds

Wednesday

Terraform Demo

Final Project Office Hours

MP Office Hours

MP8

Terraform

This MP will run on individual GCP. Please read the documentation.

Due Next Tuesday

