
CS 398 ACC
MapReduce Part 1

Prof. Robert J. Brunner

Ben Congdon
Tyler Kim

● Looking for people interested in working with City of
Champaign Data (outside of this class)

● If interested, please contact Professor Brunner directly

● Prerequisite: INFO490 I & II or equivalent.

Data Science Projects for iDSI

Administrative Reminders

● This course is experimental / new in its structure
○ An attempt to fill a niche, and would not exist if not for the current format
○ It’s also not a required course
○ We welcome feedback!

● Questions/concerns about:
○ Course content / MPs?

■ Piazza, Email list, after lecture office hours

○ Course administration?
■ Professor Brunner Office hours:

● 12pm-1pm Tuesday, 226 Astronomy Building

Administrative Reminders

● Check Piazza for announcements
○ Some Wednesday lectures will be optional

■ i.e. Tutorial session / office hours
○ This week’s lecture is not optional :)

● More on MP1 at the end of the lecture...

MP 1 & Quiz 1

MP 1 will be released later tonight.
- Due January 30th 11:59 pm

Quiz 1 will be released tomorrow.
- Due this Friday 11:55 pm

● A bit about Distributed Systems

● MapReduce Overview

● MapReduce in Industry

● Programming Hadoop MapReduce Jobs

○ Mappers and Reducers
○ Operating Model

Outline

● A bit about Distributed Systems

● MapReduce Overview

● MapReduce in Industry

● Programming Hadoop MapReduce Jobs

○ Mappers and Reducers
○ Operating Model

Outline

● Running computation on large amounts of data

○ Want a Framework that scales from 10GB => 10TB => 10PB

Our Primary Concerns:

● High throughput data processing

○ Not only processing lots of data, but doing so in a reasonable timeframe

● Cost efficiency in data processing

○ Workloads typically run weekly/daily/hourly (not one-off)

○ Need to be mindful of costs (hardware or otherwise)

What traditionally restricts performance?

● Processor frequency (Computation-intensive tasks)
○ Fastest commodity processor runs at 3.7 - 4.0 Ghz
○ Rough correlation with instruction throughput

● Network/Disk bandwidth (Data-intensive tasks)
○ Often, data processing is computationally simple
○ Jobs become bottlenecked by network performance, instead of computational

resources

Moore’s Law

● The number of transistors
in a dense integrated
circuit doubles
approximately every two
years

● It’s failing!

Parallelism

● If Moore’s law is slowing down how can we process more data at local
scale?
○ More CPU cores per processor
○ More efficient multithreading / multiprocessing

● However, there are limits to local parallelism…
○ Physical limits: CPU heat distribution, processor complexity
○ Pragmatic limits: Price per processor, what if the workload isn’t

CPU limited?

Distributed Systems from a Cloud Perspective

● Mindset shift from vertical scaling to horizontal scaling
○ Don’t increase performance of each computer
○ Instead, use a pool of computers - (a datacenter, “the cloud”)
○ Increase performance by adding new computer to pool

■ (Or, buy purchasing more resources from a cloud vendor)

Distributed Systems from a Cloud Perspective

● Vertical Scaling - “The old way”
○ Need more processing power?

■ Add more CPU cores to your existing machines
○ Need more memory?

■ Add more physical memory to your existing machines
○ Need more network bandwidth?

■ Buy/install more expensive networking equipment

Distributed Systems from a Cloud Perspective

● Horizontal Scaling
○ Standardize on commodity hardware

■ Still server-grade, but before diminishing returns kicks in
○ Need more CPUs / Memory / Bandwidth?

■ Add more (similarly spec’d) machines to your total resource pool

○ Still need to invest in good core infrastructure (machine interconnection)
■ However, commercial clouds are willing to do this work for you

● Empirically, horizontal scaling works really well if done right:
○ This is how Google, Facebook, Amazon, Twitter, et al. achieve high performance
○ Also changes how we write code

■ We can no longer consider our code to only run sequentially on one computer

● A bit about Distributed Systems

● MapReduce Overview

● MapReduce in Industry

● Programming Hadoop MapReduce Jobs

○ Mappers and Reducers
○ Operating Model

Outline

MapReduce

● What it is:
○ A programming paradigm to break data processing jobs into distinct stages which

can be run in a distributed setting

● Big Idea:
○ Restrict programming model to get parallelism “for free”

● Most large-scale data processing is free of “data dependencies”
○ Results of processing one piece of data not tightly coupled with results of

processing another piece of data
○ Increase throughput by distributing chunks of the input dataset to different

machines, so the job can execute in parallel

MapReduce

● A job is defined by 2 distinct stages:
○ Map - Transformation / Filtering
○ Reduce - Aggregation

● Data is described by key/value pairs
○ Key - An identifier of data

■ I.e. User ID, time period, record identifier, etc.

○ Value - Workload specific data associated with key
■ I.e. number of occurences, text, measurement, etc.

Map & Reduce

Map
○ A function to process input key/value pairs to generate a set of intermediate key/value pairs.
○ Values are grouped together by intermediate key and sent to the Reduce function.

Reduce
○ A function that merges all the intermediate values associated with the same intermediate key

into some output key/value per intermediate key

<key_input, val_input> ⇒ <key_inter, val_inter> ⇒ <key_out, val_out>

Map Reduce

Map & Reduce - Word Count

● Problem: Given a “large” amount of text data, how many occurences of each
individual word are there?
○ Essentially a “count by key” operation

● Generalizes to other tasks:
○ Counting user engagements, aggregating log entries by machine, etc.

● Map Phase:
○ Split text into words, emitting (“word”, 1) pairs

● Reduce Phase:
○ Calculate the sum of occurrences per word

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“ABCAACBCD”

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“A B C”

“A A C”

“B C D”

“ABCAACBCD”

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“A B C”

“A A C”

“B C D”

(“A”, 1)

(“B”, 1)

(“C”, 1)

“A”

“B”

“C”

“D”

“Shuffle and Sort”

“ABCAACBCD”

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“A B C”

“A A C”

“B C D”

(“A”, 1)

(“B”, 1)

(“C”, 1)

(“A”, 1)

(“C”, 1)

“A”

“B”

“C”

“D”

“Shuffle and Sort”

“ABCAACBCD”

(“A”, 1)

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“A B C”

“A A C”

“B C D”

(“A”, 1)

(“B”, 1)

(“C”, 1)

(“C”, 1)

“A”

“B”

“C”
(“B”, 1)

“D”

(“C”, 1)

(“D”, 1)

“Shuffle and Sort”

“ABCAACBCD”

(“A”, 1)
(“A”, 1)

Map & Reduce - Word Count

Input Data: Mapper Reducer Output Data

“A B C”

“A A C”

“B C D”

(“A”, 1)

(“B”, 1)

(“C”, 1)

(“C”, 1)

“A”

“B”

“C”
(“B”, 1)

“D”

(“C”, 1)

(“D”, 1)

“Shuffle and Sort”

“ABCAACBCD”

(“A”, 3)

(“B”, 2)

(“C”, 3)

(“D”, 1)

(“A”, 1)
(“A”, 1)

Map & Reduce - Word Count

Input Data: Output Data

“Shuffle and Sort”

“ABCAACBCD”

Node 2

Node 1

Node 3

Node 4

Node 5

Node 6

Node 7

Map Phase Reduce
Phase

Map & Reduce - Word Count

Input Data: Output Data

“Shuffle and Sort”

“ABCAACBCD”

Node 2

Node 1

Node 3

Node 4

Node 5

Map Phase Reduce
Phase

Map & Reduce

● Why is Map parallelizable?

● Why is Reduce parallelizable?

● What do we give up in using MR?

○ Input data split into independent chunks which can be transformed / filtered
independently of other data

○ The aggregate value per key is only dependent on values associated with that key
○ All values associated with a certain key are processed on the same node

○ Can’t “cheat” and have results depend on side-effects, global state, or partial
results of another key

Map & Reduce - Shuffle/Sort In-Depth
1. Combiner - Optional

○ Optional step at end of Map Phase to pre-combine intermediate values before
sending to reducer

○ Like a reducer, but run by the mapper (usually to reduce bandwidth)

2. Partition / Shuffle
○ Mappers send intermediate data to reducers by key (key determines which reducer

is the recipient)
○ “Shuffle” because intermediate output of each mapper is broken up by key and

redistributed to reducers

3. Secondary Sort - Optional
○ Sort within keys by value
○ Value stream to reducers will be in sorted order

Map & Reduce - Shuffle/Sort - Combiner

Map Reduce

Mapper 1:
“ABABAA”

Mapper 2:
“BBCCC”

Mapper 3
“CCCC”

Reducer 1

Reducer 2

Reducer 3

Map & Reduce - Shuffle/Sort - Combiner

Map Reduce

(“A”,
1)

Mapper 1:
“ABABAA”

Mapper 2:
“BBCCC”

Mapper 3
“CCCC”

(“A”,
1)

(“A”,
1)(“A”,
1)

(“B”, 1)
(“B”, 1)

(“B”, 1) (“B”, 1)

(“C”, 1)
(“C”, 1)(“C”, 1)

(“C”, 1) (“C”, 1)
(“C”, 1) (“C”, 1)

Reducer 1

Reducer 2

Reducer 3

(“A”, 4)

(“B”, 4)

(“C”, 7)

Map & Reduce - Shuffle/Sort - Combiner

Map Reduce

Mapper 1:
“ABABAA”

Mapper 2:
“BBCCC”

Mapper 3
“CCCC”

Reducer 1

Reducer 2

Reducer 3

Combiner

Combiner

Combiner

Map & Reduce - Shuffle/Sort - Combiner

Map Reduce

(“A”,
1)

Mapper 1:
“ABABAA”

Mapper 2:
“BBCCC”

Mapper 3
“CCCC”

(“A”,
1)

(“A”,
1)(“A”,
1)

(“B”, 1)
(“B”, 1)

(“B”, 1) (“B”, 1)

(“C”, 1)
(“C”, 1)(“C”, 1)

(“C”, 1) (“C”, 1)
(“C”, 1) (“C”, 1)

Reducer 1

Reducer 2

Reducer 3

Combiner

Combiner

Combiner

Map & Reduce - Shuffle/Sort - Combiner

Map Reduce

(“A”,
1)

Mapper 1:
“ABABAA”

Mapper 2:
“BBCCC”

Mapper 3
“CCCC”

(“A”,
1)

(“A”,
1)(“A”,
1)

(“B”, 1)
(“B”, 1)

(“B”, 1) (“B”, 1)

(“C”, 1)
(“C”, 1)(“C”, 1)

(“C”, 1) (“C”, 1)
(“C”, 1) (“C”, 1)

Reducer 1

Reducer 2

Reducer 3

(“A”, 4)

(“B”, 4)

(“C”, 7)

Combiner
(“A”, 4)

Combiner

Combiner

(“B”, 2)

(“B”, 2)

(“C”, 3)

(“C”, 4)

Map & Reduce - Caveats

● What if we need data that is dependent on another key?
○ Solution: Chain MapReduce jobs together
○ Job 1: Calculate necessary subconditions per each key
○ Job 2: Determine final aggregate value

● Chaining MapReduce Jobs
○ Output of nth

 job is the input to the (n+1)th job
○ Very useful in practice!
○ Try to minimize number of stages, because bandwidth overhead per stage is high

■ MapReduce tends to be naive in this area

● A bit about Distributed Systems

● MapReduce Overview

● MapReduce in Industry

● Programming Hadoop MapReduce Jobs

○ Mappers and Reducers
○ Operating Model

Outline

Hadoop MapReduce

● What it is: Specific implementation of a MapReduce system

● What Hadoop MapReduce gives us:
○ A means of automatically distributing work across machines
○ Scheduling of jobs
○ Fault tolerance
○ Cluster monitoring and job tracking

● How? An underlying resource manager (more on this later)

Hadoop MapReduce

● How fast is it?

○ Benchmarks based on sorting large datasets (synthetic load)
○ Hadoop Record: 1.42TB / min

■ Record set in 2013 using a 2100 node cluster
■ Since 2014, Spark (and others) have been faster

● Compelling Use Cases:

MapReduce in Industry

○ Batch Processing

■ Analyzing data “at rest” (i.e. daily/hourly jobs, not streaming data)

■ i.e. Log Processing, User data transformation / analysis, web scraping

○ Workloads that can be broken into a single (or few) distinct Map/Reduce

phases

■ Poor results on iterative workloads

● Non-parallizable workloads => Many MR stages => High bandwitdh

overhead

● Google

○ Released MapReduce whitepaper in 2004, detailing their use of MR to process

large datasets

○ Inspired Hadoop MapReduce (Open source implementation)

MapReduce in Industry

● Twitter

○ Uses MapReduce to “process tweets, log files, and many other types of data”

● Facebook

○ Maintains 2 Hadoop clusters with 1400 total machines and 10,000+ processing

cores, 15PB of storage

MapReduce in Industry

● Spotify

○ Runs 20k+ Hadoop jobs daily

○ Uses Hadoop for “content generation, data aggregation, reporting, analysis”

Wednesday:

● Writing MapReduce jobs
● Specific MapReduce use cases

MP Logistics

● Please log into the UIUC Gitlab if you have not already
○ http://gitlab.engr.illinois.edu

● Make sure you have access to a system with Python3
○ Install via Miniconda / Package Manager
○ Use an EWS Workstation

● Post on Piazza if you encounter issues

http://gitlab.engr.illinois.edu

MP 1

Due next Tuesday (1/30) at 11:59pm

Introduces how to run MapReduce using in Python on a single machine

> Check Piazza for Q&A and Announcements

