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MP3

How’s it going? 

Final Autograder run:
- Tonight ~9pm
- Tomorrow ~3pm

● Due tomorrow at 11:59 pm.

● Latest Commit to the repo at the time will be graded.

● Last Office Hours today after the lecture until 7pm.



● Streaming Overview

● Spark Streaming

● Spark Streaming Programming

● Final Project Announcement
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Streaming

● Why streaming?
○ Lots of data is not fixed, in practice

○ We have new data coming in all the time; it makes sense to respond in real time

● What is streaming?
○ Clients push “events” in real time to an interface with our streaming system

○ The streaming system distributes input across the cluster (like batch processing)

○ Some resultant data is generated, which can be saved or streamed out of the 

system



Batch Processing vs Stream Processing

Batch Processing Stream Processing

Data Size Large batches of data; 
Most data in a data set “An event”; Micro-batches of records

Nominal Latency Minutes to Hours In the order of milliseconds

Analysis Complex Algorithm/Analytics Simple functions, aggregation, rolling 
metrics



Application of Streaming Data

● Real-Time Machine Learning
○ e.g. Twitter’s “trending” topics, disaster monitoring, etc. 

● Tracking changes in the finance markets in real-time 

● Processing sensor data in large industrial settings
○ (Also scientific settings)



Stream Sources

● File System

● Internet of Things

● Network Traffic

● Embedded devices on a radio frequency



Apache Storm - A pure streaming system

● Purpose-built for real-time stream computation

● Three main concepts:
○ “Stream”: An unbounded sequence of tuples (like an infinite RDD)
○ “Spout”: A source of tuples
○ “Bolt”: A transformation operation on a stream



Apache Storm - A pure streaming system

● Spouts, Bolts, and Streams define a “Topology”
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Apache Storm

● Powerful language-agnostic tool/framework

● Open-sourced by Twitter
○ Used to power Twitter’s real-time tweet analytics
○ Now Twitter uses Heron

● Handles fault tolerance
○ Keeps track of which tuples have been fully processed
○ If a “Bolt” fails, unprocessed / partially processed tuples are reprocessed
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Spark Streaming



Spark Looks a lot like Apache Storm...
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Spark Looks a lot like Apache Storm...

Data 
Source A

Transformation

Transformation

TransformationTransformation Output

RDD

RDD

RDD

Action

Data 
Source B

Spark Streaming



How Spark Handles Streaming

● Spark Core has a robust way for creating computation graphs on batch data

● How can we extend this to streaming data?



How Spark Handles Streaming



How Spark Handles Streaming
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How Spark Handles Streaming
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How Spark Handles Streaming
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How Spark Handles Streaming
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● DStream
○ “Discretized Stream” which represents an infinite stream of data
○ In actuality, it’s a (endless) sequence of RDDs

● Spark Streaming Context
○ Similar to the Spark Context, except it handles DStreams
○ Has a user-defined batch interval

■ Defines the window size for RDDs

● Job Processing
○ Executed in multiples of the batch interval

How Spark Handles Streaming



● Built-in Data Sources
○ File Stream - Load new files in a given directory
○ Socket Stream - Listen on a TCP connection for new data

● Additional Supported Stream Sources
○ Kafka (Apache)
○ Flume (Apache, in the Hadoop ecosystem)
○ Kinesis (AWS)

Spark Stream Sources
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● Transformations
○ Operations on DStreams (mostly) identical to RDDs
○ Functions: Map, Filter, Join, etc.

● Windowed Operations
○ Applied transformation on a time-based window of data
○ Functions: CountByWindow, ReduceByWindow, etc.

Spark Streaming Programming



● Stateful Operations
○ So far, we’re limited to “seeing” data within our current window
○ What if we need arbitrary state?
○ Functions: “UpdateStateByKey”

■ Uses an RDD to keep a persistent state

● The “Transform” Function
○ Allows you get access to the underlying DStream RDD
○ Used for “combining” DStream data with arbitrary RDDs

■ i.e. Join streamed data on precomputed data

Spark Streaming Programming



Spark Streaming Programming Example

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

# local streaming context with two threads 

sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 1)  # batch interval of 1 second

# DStream that pulls from localhost:8888

lines = ssc.socketTextStream("localhost", 8888)



Spark Streaming Programming Example

# We can use the lines DStream almost like a normal RDD

filtered = lines.filter(lambda l: 'cloud' in l).flatMap(lambda x: x.split()

key_on_word = filtered.map(lambda w: (w, 1))

# Count in window lengths of 30 seconds, evaluated every 10 seconds

windowed = key_on_word.countByValueAndWindow(30, 10)

# We can call an action on DStreams like RDDs

windowed.pprint()

# Start stream processing

ssc.start()



MP4 - Spark Streaming

● Will be released Tonight. 
● Due next Tuesday at 11:59pm (as normal)
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● Goal: Perform exploratory analysis on a large dataset using cloud technologies

● High Level Overview:

○ Choose a dataset; Perform some type of novel analysis; Document and present 

your findings

● Components:

○ Group Selection

○ Project Proposal

○ Project Presentation

○ Project Report

○ Peer Evaluation

CS398 Final Project



● Group Selection

○ Project groups must have 3-4 students

○ You may select your own groups

■ We will also open the Piazza group selection forum

○ Group selection will be “locked in” by submitting a form on March 10th at 

11:59pm

● March 9th - Drop Deadline

CS398 Final Project



● Dataset Selection

○ Groups are free to pick datasets given:

■ Dataset size is between 3GB - 500GB

■ You have the rights to use it for educational purposes 

○ Groups will be given cluster or S3 space to place their dataset

■ Groups are responsible for loading the dataset into S3 / the cluster

○ Final Project page lists many example datasets

■ i.e. Government data, AWS public data, etc.

○ Due in your Project Proposal

CS398 Final Project



● Project Proposal

○ Addresses:

■ What dataset you’ll be using

■ What technologies / frameworks you’ll be using

■ Hypotheses about the data that you plan to test

■ Briefly defend the utility / novelty of your planned work

○ Should be detailed enough to have an idea of what you’ll be working on

○ You may deviate from your proposal as you work

○ Due March 16th at 11:59pm

CS398 Final Project



● Project Work

○ All work on projects will be independent of the class

■ MPs will continue to be released

○ Groups are encouraged to use the course cluster

○ Groups may request additional software / resources

■ Requests will be evaluated by course staff

CS398 Final Project



● Project Report

○ The “final product” of your work

○ Should address:

■ What datasets / frameworks you ultimately used

■ What results / insights / knowledge you recovered from the data

■ What issues did you encounter during the project; how did you resolve them

○ All application code must be submitted

○ Should include a brief performance report

○ Due May 2nd at 11:59pm (Day before Reading Day)

CS398 Final Project



● Project Report Grading

○ Usage of Cloud Computing (40%)

■ Did your project make adequate use of the CC technologies discussed in class?

○ Treatment of Dataset (20%)

■ Did your project make logical use of the dataset you chose?

○ Application Novelty (20%)

■ Did your group attempt to do something new and interesting? (Not WordCount™ 2.0)

○ Formatting (10%)

■ Is your report coherent? Does it contain all components?

○ Code Submission (10%)

■ Did you submit all the code necessary to replicate your results?

CS398 Final Project



● Project Presentation

○ Conducted during the last 2 weeks of lecture

■ April 23, April 25, April 30

○ Present high-level findings of your project in 8-10 minutes

■ What dataset did you use?

■ What technologies did you use?

■ What were your results? What applications do your findings have?

CS398 Final Project



● Peer Evaluation

○ Evaluation of Group Members

■ You will evaluate the contributions of your group members

■ You will be graded (in part) by the evaluations of your group members

○ Evaluation of Other Groups

■ You must attend at least 2 of the 3 project presentation days

■ You will evaluate the presentations of the other groups that present on those 

days

■ You will be graded (in part) by the evaluations of your peers

CS398 Final Project



● Grading Overview:

○ Group Selection: 5%

○ Project Proposal: 10%

○ Project Report: 45%

○ Project Presentation: 20%

○ Peer Evaluation: 10% + 10%

CS398 Final Project



● Deadline Overview:

○ Group Selection: March 10th (Week 8)

○ Project Proposal: March 16th (Week 9, Right before Spring Break)

○ Project Report: May 2nd (Week 16, Right before Reading Day)

○ Project Presentation: During scheduled lecture times, Weeks 15-16

○ Peer Evaluation

■ Evaluation of peers: During scheduled lecture times, Weeks 15-16

■ Group member evaluation: Due right before Reading Day

CS398 Final Project


