
CS 398 ACC
NoSQL and Key/Value Stores

Prof. Robert J. Brunner

Ben Congdon
Tyler Kim



MP6

How’s it going? 

● Due March 13th at 11:59 pm.

Submit your results as a PDF report on Moodle



Final Project Reminders

● Group Selection: Due March 10th at 11:59pm

○ Group commitment form will be posted on Piazza shortly

● Project Proposal: Due March 16th at 11:59pm

○ See requirements on the Course Website



A little bit of history

● Most databases became SQL-like in the 1980s

● In 2006 Google published their BigTable paper
○ It was not SQL
○ It was designed to scale to petabytes of data (1000s of gigabytes) on thousands of nodes
○ Solved scaling by relaxing availability

● In 2007 Amazon published their Dynamo paper
○ Again not SQL; Similarly solves the problem of scaling
○ Solved scaling through relaxing consistency

● By 2009 there were tons of systems like these
● Now when you have hundreds of nodes, NoSQL is the normal solution



NoSQL

● Databases which may not be relational and can scale to tons and tons of 
servers

● Sacrifice SQL compatibility to get higher read/write/storage rates
● Needed when data cannot be managed a few servers



SQL vs NoSQL

● SQL systems are typically good at consistency
○ If data is written to a row, all reads will get that write
○ This can slow down transactions

● The vast majority of databases (not only SQL) are ACID:
○ Atomic
○ Consistent 
○ Isolated
○ Durable

● ACID is analogous to the properties of a global variable in a single threaded 
program



NoSQL Database Types

● Key Value Store
● Document Oriented
● Columnar Storage



Key Value Store 

● These store key value pairs really really well
● Can be used as a distributed cache
● Some document stores are key value stores under the hood

{
Key1: val1,
Key2: val2

}



Document Oriented Databases

● They store complex structures like:
○ JSON
○ XML
○ YAML

● These work really well when most queries are for one item instead of 
aggregations

● Typically provide their own unique query languages

● These extend the idea of key value stores to more complex types





Document Vs Key Value Databases

Both address objects with a key:

● Document DBs cluster documents within collections
● Key value stores mainly have only one collection
● Key value stores are faster (Smaller values and less structure)
● Document DBs support more extensive query languages in general

● If you do not need complex objects, use a key value store



Columnar/Column based Databases

● Columns are stored together instead of rows
● A row is can be split amongst many machines
● Makes aggregations really fast since a single column normally resides on one 

machine
● Usually does not support joins (or joins are very slow)



Row based databases

Source: AWS 

Columnar based databases



Relaxing Constraints

● All of the above types can be implemented using a normal SQL database a 
backend

● They can also be implemented as ACID databases

● What if we specified you did not need strong consistency?



Eventual Consistency

● Making everything consistent immediately means clients need to queue
● Say you have 3 clients, one writing and the other two reading

Write X

Read X

Read X



Eventual Consistency

● Making everything consistent immediately means clients need to queue
● Say you have 3 clients, one writing and the other two reading

The true ordering is

T=0 T=1 T=2

Read X Write X Read X



Eventual Consistency

● But you could receive this order because of network delays

T=0 T=1 T=2

Read X Read X Write X



Eventual Consistency
● Or if you have two servers, one could receive the true ordering and one the 

out of order ordering

Server 1 sees

Server 2 Sees

T=0 T=1 T=2

Read X Read X Write X

T=0 T=1 T=2

Read X Write X Read X



Eventual Consistency
● But sometimes we can afford old values being read for a little while. This 

means we can read and write at the same time.

Server 1 sees

Server 2 Sees

T=0 T=1 T=2

Read X Read X Write X

T=0 T=1 T=2

Read X Write X Read X



CAP Theorem

● Consistency
○ All reads receive the most recent write or error

● Availability
○ Every read/write receives a non error

● Partition Tolerance
○ Everything keeps working if the network starts dropping messages

Pick 2



CAP Theorem

● Consistency
○ All reads receive the most recent write or error

● Availability
○ Every read/write recieves a non error

● Partition Tolerance
○ Everything keeps working if the network starts dropping messages

Pick 2

● Each of these have a non strict version
● But you cannot guarantee all 3 in all scenarios



From Ofirm



CA Systems

● Consistency and availability
○ They will always respond with the latest write

● Most SQL databases are CA systems.

● SQL Systems
○ MySQL
○ MSSQL
○ SQLite
○ PostgreSQL



CP Systems

Consistency and Partition Tolerance

● Will give you the latest write or give you an error if not possible
● Can survive half the network going down
● HBase, BigTable, MongoDB



● Is a CP system
● Used in HDFS
● Linear and modular scalability.
● Strictly consistent reads and writes.
● Automatic and configurable sharding of table

● Everything is still a table
● Can return an error since it is CP



● Is a CP system
● Extremely easy to set up

○ The defaults are insecure

● Document Oriented DB
○ Only stores JSON objects
○ No longer a simple table

● Is a key value store



● CP System
● Is a key value store
● Lets you write data structures into memory and share them
● Very fast: Often used as a caching layer



● CP System
● Resembles a key-value store

○ Allows indexing, but this involves data-replication

● Very fast reads
● Scales well



● CP System
● Global SQL Database

Google Spanner



AP Systems

● Available and partition tolerant
● Never returns an error even when half the network is dead



From Ofirm



● AP system
● Column-Oriented
● Super high availability and super high throughput

○ Used by Reddit, Facebook and others



● AP system
● Key value store
● Can be faster than MongoDB but sacrifices consistency 



When to use SQL vs NoSQL

● By default use an SQL database

● Use NoSQL when you need more than one server AND you have a super high 
write rate

○ NoSQL happens when you can sacrifice CA and need some other pair from CAP



Wednesday

● Project Proposal Help
● MLlib Lab Office Hours



MP 6

Due next Tuesday, March 13th at 11:59pm

Topic: “Spark MLlib”

> Check Piazza for Q&A and Announcements


