Programming Languages and
Compilers (CS 421)
Elsa L Gunter 2112 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/CS421D
Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha $9 / 5 / 17$

Booleans (aka Truth Values)

\# true;;

- : bool = true
\# false;;
- : bool = false
$/ / \rho_{7}=\{c \rightarrow 4$, test $\rightarrow 3.7, a \rightarrow 1, b \rightarrow 5\}$
\# if b > a then 25 else $0 ;$;
- : int = 25

Booleans and Short-Circuit Evaluation

\# $3>1 \& \& 4>6 ; ;$

- : bool = false
\# 3 > 1 || 4 > 6;;
- : bool = true
\# (print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
\# 3 > 1 || (print_string "Bye\n"; $4>6$);;
- : bool = true
\# not (4 > 6) ;;
- : bool = true

9/517

Tuples as Values

$/ / \rho_{7}=\{c \rightarrow 4$, test $\rightarrow 3.7$, $a \rightarrow 1, b \rightarrow 5\}$
\# let $\mathrm{s}=(5$, "hi", 3.2);

val s : int * string * float = (5, "hi", 3.2)
// $\rho_{8}=\{s \rightarrow(5$, "hi", 3.2),
$\mathrm{c} \rightarrow 4$, test $\rightarrow 3.7$,
$a \rightarrow 1, b \rightarrow 5\}$

Pattern Matching with Tuples

/ $\rho_{8}=\{s \rightarrow(5, " h i ", 3.2)$, $\mathrm{c} \rightarrow 4$, test \rightarrow 3.7,
$a \rightarrow 1, b \rightarrow 5\}$

\# let $(a, b, c)=s ; \quad(*(a, b, c)$ is a pattern *)
val a : int = 5
val b: string = "hi"
val c: float $=3.2$
\# let $x=2,9.3 ;$ ($*$ tuples don't require parens in Ocaml *)
val x : int * float $=(2,9.3)$
9/5/17

Nested Tuples

\# (*Tuples can be nested ${ }^{*}$)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) $*$ float $=$ ((1, 4, 62), ("bye", 15), 73.95)
\# (*Patterns can be nested *)
let (p,(st,_),_) = d; (* _ matches all, binds nothing
*)
val p : int * int * int $=(1,4,62)$
val st : string = "bye"

9/5/17

Functions on tuples

\# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
\# plus_pair (3,4);;

- : int = 7
\# let double $x=(x, x)$; ;
val double : 'a -> 'a * 'a = <fun>
\# double 3;;
- : int * int = $(3,3)$
\# double "hi";;
- : string * string = ("hi", "hi")

9/5/17

Save the Environment!

A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

$$
<(\mathrm{v} 1, \ldots, \mathrm{vn}) \rightarrow \exp , \rho>
$$

- Where ρ is the environment in effect when the function is defined (for a simple function)

Functions on tuples

\# let plus_pair (n,m) = n + m; ;
val plus_pair : int * int -> int = <fun>
\# plus_pair (3,4);;

- : int = 7
\# let double $x=(x, x)$; ;
val double : 'a -> 'a * 'a = <fun>
\# double 3;;
- : int * int = $(3,3)$
\# double "hi";;
- : string * string = ("hi", "hi")

9/5/17

Closure for plus_pair

- Assume $\rho_{\text {plus_pair }}$ was the environment just before plus_pair defined
- Closure for fun (n, m) -> $n+m$:

$$
<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>
$$

- Environment just after plus_pair defined:

$$
\begin{gathered}
\left\{\text { plus_pair } \rightarrow<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\} \\
+\rho_{\text {plus_pair }}
\end{gathered}
$$

Curried vs Uncurried

- Recall
val add_three : int -> int -> int -> int = <fun>
- How does it differ from
\# let add_triple $(u, v, w)=u+v+w_{;} ;$
val add_triple : int * int * int $->$ int $=<$ fun $>$
- add_three is curried;
- add_triple is uncurried

Curried vs Uncurried

\＃add＿triple（6，3，2）；；

－：int＝ 11
\＃add＿triple 5 4；；
Characters 0－10： add＿triple 5 4；；
ヘヘヘヘヘヘヘヘヘヘ＾
This function is applied to too many arguments， maybe you forgot a｀；＇
\＃fun x－＞add＿triple（ $5,4, x$ ）；；
：int－＞int＝＜fun＞

Recall：let plus＿x $=$ fun $x=>y+x$

Evaluating declarations

－Evaluation uses an environment ρ
－To evaluate a（simple）declaration let $x=e$
－Evaluate expression e in ρ to value v
－Update ρ with x v：$\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
－Update：$\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1}
$\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow{ }^{\prime \prime h i "}\right\}+\{y \rightarrow 100, b \rightarrow 6\}$
$=\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "^{\prime}, b \rightarrow 6\right\}$

Partial application of functions

let add＿three x y z＝x＋y＋z；；
\＃let h＝add＿three 5 4；；
val h ：int－＞int $=$＜fun＞
\＃h 3；；
－：int＝ 12
\＃h 7；；

：int＝ 16

Partial application also called sectioning
\qquad

Closure for plus＿x

－When plus＿x was defined，had environment：

$$
\rho_{\text {plus_x }}=\{\ldots, x \rightarrow 12, \ldots\}
$$

－Recall：let plus＿x $y=y+x$ is really let plus＿$x=$ fun $y->y+x$
－Closure for fun $y->y+x$ ：

$$
<y \rightarrow y+x, \rho_{\text {plus_x }}>
$$

－Environment just after plus＿x defined：

$$
\left\{\text { plus_x } \rightarrow<y \rightarrow y+x, \rho_{\text {plus_x }}>\right\}+\rho_{\text {plus_x }}
$$

9／5／17

Evaluating expressions

－Evaluation uses an environment ρ
－A constant evaluates to itself
－To evaluate an variable，look it up in $\rho(\rho(\mathrm{v}))$
－To evaluate uses of＋，，，etc，eval args， then do operation
－Function expression evaluates to its closure
－To evaluate a local dec：let $x=e 1$ in e2
－Eval e1 to v ，eval e2 using $\{x \rightarrow v\}+\rho$

- Given application expression $f\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$
- In environment ρ, evaluate left term to closure, $c=\left\langle\left(x_{1}, \ldots, x_{n}\right) \rightarrow b, \rho\right\rangle$
- ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) variables in (first) argument
- Evaluate $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$ to value $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
- Update the environment ρ to $\rho^{\prime}=\left\{\mathrm{x}_{1} \rightarrow \mathrm{v}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{n}}\right\}+\rho$
- Evaluate body bin environment ρ ' 9/5/17

Evaluation of Application of plus_pair

- Assume environment
$\rho=\{x \rightarrow 3 \ldots$,
plus_pair $\left.\rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\}+$ $\rho_{\text {plus_pair }}$
- Eval (plus_pair $(4, x), \rho)=$
- App (Eval (plus_pair, ρ), Eval $((4, x), \rho))=$
- $\operatorname{App}\left(<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>,(4,3)\right)=$
- Eval $\left(\mathrm{n}+\mathrm{m},\{\mathrm{n}->4, \mathrm{~m}->3\}+\rho_{\text {plus_pair }}\right)=$
- Eval $\left(4+3,\{n->4, m->3\}+\rho_{\text {plus_pair }}\right)=7$

Answer

let $\mathrm{f}=$ fun $\mathrm{n}->\mathrm{n}+5$; ;
$\rho_{0}=\{f \rightarrow<n \rightarrow n+5,\{ \}>\}$

Evaluation of Application of plus_x;;

- Have environment:
$\rho=\left\{\right.$ plus_ $x \rightarrow\left\langle y \rightarrow y+x, \rho_{\text {plus_ }}>, \ldots\right.$,

$$
y \rightarrow 3, \ldots\}
$$

where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$

- Eval (plus_xy, ρ) rewrites to
- App (Eval(plus_x, $\rho)$, Eval($(y, \rho))$ rewrites to
- App $\left(<y \rightarrow y+x, \rho_{\text {plus_x }}>3\right)$ rewrites to
- Eval $\left(y+x,\{y \rightarrow 3\}+\rho_{\text {plus_ }}\right)$ rewrites to
- $\operatorname{Eval}\left(3+12, \rho_{\text {plus_x }}\right)=15$

9/5/17
20

Closure question

- If we start in an empty environment, and we execute:
let $\mathrm{f}=$ fun $\mathrm{n}->\mathrm{n}+5$;
(* 0 *)
let pair_map $g(n, m)=(\mathrm{g} n, \mathrm{~g} \mathrm{~m})$; ;
let $\mathrm{f}=$ pair_map f ;
let $a=f(4,6)$;
What is the environment at (0 *) ?

9/5/17

Closure question

- If we start in an empty environment, and we execute:
let $\mathrm{f}=$ fun $=>\mathrm{n}+5$; ;
let pair_map $\mathrm{g}(\mathrm{n}, \mathrm{m})=(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m})$; ;
(* 1 *)
let $\mathrm{f}=$ pair_map f;
let $a=f(4,6) ;$;
What is the environment at (${ }^{*}$ *) ?

Answer

$$
\begin{aligned}
& \rho_{0}=\{f \rightarrow<n \rightarrow n+5,\{ \}>\} \\
& \text { let pair_map } g(n, m)=(g n, g m) ; ; \\
& \rho_{1}=\{\text { pair_map } \rightarrow \\
& \quad<g \rightarrow \text { fun }(n, m)->(g n, g m), \\
& \quad\{f \rightarrow<n \rightarrow n+5,\{ \}>\}>, \\
& f \rightarrow<n \rightarrow n+5,\{ \}>\}
\end{aligned}
$$

Evaluate pair_map f

$\rho_{0}=\{\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
$\rho_{1}=\left\{\right.$ pair_map $\rightarrow<\mathrm{g} \rightarrow$ fun $(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}), \rho_{0}>$, $\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
let $f=$ pair_map $f ;$;

Evaluate pair_map f

```
\(\rho_{0}=\{\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}\)
\(\rho_{1}=\left\{\right.\) pair_map \(\rightarrow\left\langle g \rightarrow\right.\) fun \((n, m)->(g n, g m), \rho_{0}>\),
    \(\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}\)
```

Eval(pair_map f, ρ_{1})=
App (<g \rightarrow fun $(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}), \rho_{0}>$,
$<n \rightarrow n+5,\{ \}>)=$

Closure question

- If we start in an empty environment, and we execute:
let $f=$ fun $=>n+5$;;
let pair_map $g(n, m)=(g n, g m) ;$;
let $\mathrm{f}=$ pair_map f ;;
(* 2 *)
let $a=f(4,6) ;$;
What is the environment at (*2*)?

9/5/17

Evaluate pair_map f
$\rho_{0}=\{\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
$\rho_{1}=\left\{\right.$ pair_map $\rightarrow<$ g \rightarrow fun $(n, m)->(g n, g m), \rho_{0}>$, $\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
Eval(pair_map f, ρ_{1}) =

Evaluate pair_map f

$\rho_{0}=\{\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
$\rho_{1}=\left\{\right.$ pair_map $\rightarrow<$ g \rightarrow fun $(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}), \rho_{0}>$, $\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$
Eval(pair_map f, ρ_{1}) =
App ($<\mathrm{g} \rightarrow$ fun $(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}), \rho_{0}>$,

$$
<n \rightarrow n+5,\{ \}>)=
$$

Eval(fun (n,m)->(gn,g m), $\left.\{g \rightarrow<n \rightarrow n+5,\{ \}>\}+\rho_{0}\right)$
$=<(n, m) \rightarrow(g n, g m),\{g \rightarrow<n \rightarrow n+5,\{ \}>\}+\rho_{0}>$
$=<(n, m) \rightarrow(g n, g m),\{g \rightarrow<n \rightarrow n+5,\{ \}>$

$$
f \rightarrow<n \rightarrow n+5,\{ \}>\}
$$

Answer

```
\(\rho_{1}=\{\) pair_map \(\rightarrow\)
\(\langle g \rightarrow\) fun \((n, m)->(g n, g m),\{f \rightarrow<n \rightarrow n+5,\{ \}>\}>\),
    \(\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}\)
let \(\mathrm{f}=\) pair_map \(\mathrm{f} ;\);
\(\rho_{2}=\{f \rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m})\),
        \(\{g \rightarrow\langle n \rightarrow n+5,\{ \}>\),
        \(\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}>\),
    pair_map \(\rightarrow<\mathrm{g} \rightarrow\) fun \((\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{gm})\),
        \(\{f \rightarrow<n \rightarrow n+5,\{ \}>\}>\}\)
```


Final Evalution?

$$
\begin{aligned}
\rho_{2}=\{f \rightarrow<(n, m) \rightarrow & (g n, g m), \\
\{g \rightarrow & <n \rightarrow n+5,\{ \}>, \\
f \rightarrow & <n \rightarrow n+5,\{ \}>\}>, \\
\text { pair_map } \rightarrow & <g \rightarrow \text { fun }(n, m)->(g n, g m), \\
& \{f \rightarrow<n \rightarrow n+5,\{ \}>\}>\}
\end{aligned}
$$

let $a=f(4,6) ; ;$

Evaluate f(4,6);;

$$
\begin{aligned}
\rho_{2}=\{f \rightarrow< & (n, m) \rightarrow(g n, g m), \\
\{g \rightarrow & <n \rightarrow n+5,\{ \}>, \\
f \rightarrow & <n \rightarrow n+5,\{ \}>\}>, \\
\text { pair_map } \rightarrow & <g \rightarrow \text { fun }(n, m)->(g n, g m), \\
& \{f \rightarrow<n \rightarrow n+5,\{ \}>\}>\}
\end{aligned}
$$

Eval(f $\left.(4,6), \rho_{2}\right)=$
$\operatorname{App}(<(\mathrm{n}, \mathrm{m}) \rightarrow(\mathrm{gn}, \mathrm{gm}),\{\mathrm{g} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>$,

$$
\mathrm{f} \rightarrow\langle\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}>,
$$

$(4,6))=$

Closure question

- If we start in an empty environment, and we execute:
let $f=$ fun $=>n+5$; ;
let pair_map $\mathrm{g}(\mathrm{n}, \mathrm{m})=(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m})$;;
let $f=$ pair_map f;
let $a=f(4,6)$;;
(* 3 *)
What is the environment at (* 3 *) ?

9/5/17

Evaluate f(4,6);;
$\rho_{2}=\{\mathrm{f} \rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m})$,
$\{g \rightarrow<n \rightarrow n+5,\{ \}>$,
$\mathrm{f} \rightarrow\langle\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}>$,
pair_map $\rightarrow<\mathrm{g} \rightarrow$ fun $(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m})$, $\{f \rightarrow<n \rightarrow n+5,\{ \}>\}>\}$
$\operatorname{Eval}\left(f(4,6), \rho_{2}\right)=$

Evaluate f(4,6);;
$\operatorname{App}(<(\mathrm{n}, \mathrm{m}) \rightarrow(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}),\{\mathrm{g} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>$,
$\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}>$,
$(4,6))=$
Eval((g n, g m), $\{n \rightarrow 4, m \rightarrow 6\}+$

$$
\begin{aligned}
& \{g \rightarrow<n \rightarrow n+5,\{ \}>, \\
& \mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\})=
\end{aligned}
$$

(App(<n $\rightarrow n+5$, \{ \}>, 4),
$\operatorname{App}(<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>, 6))=$

Evaluate f(4,6);;

```
(App(<n \(\rightarrow \mathrm{n}+5,\{ \}>, 4)\),
\(\operatorname{App}(<n \rightarrow n+5,\{ \}>, 6))=\)
(Eval(n \(+5,\{n \rightarrow 4\}+\{ \}\) ),
\(\operatorname{Eval}(\mathrm{n}+5,\{\mathrm{n} \rightarrow 6\}+\{ \}))=\)
(Eval(4 + 5, \(\{n \rightarrow 4\}+\{ \})\),
\(\operatorname{Eval}(6+5,\{n \rightarrow 6\}+\{ \}))=(9,11)\)
```


Higher Order Functions

A function is higher-order if it takes a function as an argument or returns one as a result

- Example:
\# let compose $\mathrm{f} \mathrm{g}=$ fun $\mathrm{x}->\mathrm{f}(\mathrm{gx})$; ;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
- The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

Thrice

Recall:

\# let thrice f x = f (f (f x)); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

- How do you write thrice with compose?
\# let thrice f = compose f (compose f f); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
- Is this the only way?

Functions as arguments

\# let thrice $\mathrm{fx}=\mathrm{f}(\mathrm{f}(\mathrm{fx})$); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
\# let g = thrice plus_two;;
val g : int -> int = <fun>
\# g 4; ;

- : int = 10
\# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

9/5/17

Thrice

Recall:
\# let thrice $\mathrm{fx}=\mathrm{f}(\mathrm{f}(\mathrm{f} x)$); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
How do you write thrice with compose?

Lambda Lifting

- You must remember the rules for evaluation when you use partial application
\# let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
\# let add2 $=\quad\left(*\right.$ lambda lifted $\left.{ }^{*}\right)$
fun x-> (+) (print_string "test\n"; 2) $x ;$;
val add2 : int $->$ int $=$ <fun>

Lambda Lifting

\＃thrice add＿two 5；；
－：int＝ 11
\＃thrice add2 5；；
test
test
test
－：int＝ 11
－Lambda lifting delayed the evaluation of the argument to（＋）until the second argument was supplied

9／5／17
43

Partial Application and＂Unknown Types＂
－＇＿a can only be instantiated once for an expression
\＃f1 plus＿two；；
－：int－＞int＝＜fun＞
\＃f1 List．length；；
Characters 3－14：
f1 List．length；；
ヘヘヘヘヘヘヘヘヘヘヘ
This expression has type＇a list－＞int but is here used with type int－＞int

Match Expressions

\＃let triple＿to＿pair triple＝
match triple
with $(0, x, y)->(x, y)$
｜（ $x, 0, y$ ）－＞（ x, y ）
｜（ x, y, \ldots ）－＞（ x, y ）；；
val triple＿to＿pair ：int＊int＊int－＞int＊int＝ ＜fun＞

Partial Application and＂Unknown Types＂
－Recall compose plus＿two：
\＃let f1＝compose plus＿two；；
val f1 ：（＇＿a－＞int）－＞＇＿a－＞int＝＜fun＞
－Compare to lambda lifted version：
\＃let f2＝fun g－＞compose plus＿two g；；
val f2 ：（＇a－＞int）－＞＇a－＞int＝＜fun＞

- What is the difference？

9／5／17
44

Partial Application and＂Unknown Types＂
－＇a can be repeatedly instantiated
\＃f2 plus＿two；；
－：int－＞int＝＜fun＞
\＃f2 List．length；；
－：＇＿a list－＞int＝＜fun＞

9／5／17

Recursive Functions

\＃let rec factorial $\mathrm{n}=$ if $\mathrm{n}=0$ then 1 else n ＊factorial（ $\mathrm{n}-1$ ）；； val factorial ：int－＞int＝＜fun＞
\＃factorial 5；；
－：int＝ 120
\＃（＊rec is needed for recursive function declarations＊）

Recursion Example

```
Compute \(\mathrm{n}^{2}\) recursively using:
    \(\mathrm{n}^{2}=(2 * n-1)+(n-1)^{2}\)
    \# let rec nthsq \(\mathrm{n}=\quad\) (* rec for recursion \({ }^{*}\) )
    match n (* pattern matching for cases *)
    with \(0->0 \quad\) (* base case *)
    \(\mid \mathrm{n} \rightarrow>(2\) * \(\mathrm{n}-1) \quad\) (* recursive case *)
        + nthsq ( \(\mathrm{n}-1\) ); \(;\) (* recursive call *)
    val nthsq : int -> int = <fun>
    \# nthsq 3;;
    : int \(=9\)
```

Structure of recursion similar to inductive proof

Lists

First example of a recursive datatype（aka algebraic datatype）
－Unlike tuples，lists are homogeneous in type（all elements same type）

Lists

\＃let fib5＝［8；5；3；2；1；1］；；
val fib5 ：int list＝［8；5；3；2；1；1］
\＃let fib6＝ 13 ：：fib5；；
val fib6 ：int list＝［13；8；5；3；2；1；1］
\＃（8：：5：：3：：2：：1：：1：：［ ］）＝fib5；；
－：bool＝true
\＃fib5＠fib6；；
－：int list＝［8；5；3；2；1；1；13；8；5；3；2；1； 1］

Recursion and Induction

\＃let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ;
$$

－Base case is the last case；it stops the computation
－Recursive call must be to arguments that are somehow smaller－must progress to base case
－if or match must contain base case
－Failure of these may cause failure of termination

Lists

－List can take one of two forms：
－Empty list，written［ ］
－Non－empty list，written x：：xs
－ x is head element， xs is tail list，：：called ＂cons＂
－Syntactic sugar：［x］＝＝x ：：［ ］
－［ x1；x2；．．．；xn］＝＝x1 ：：x2 ：：．．．：：xn ：：［ ］

9／5／17

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；；
ヘヘヘ
This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Functions Over Lists

\# let rec double_up list = match list
with [] -> [] (* pattern before ->, expression after ${ }^{*}$)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let fib5_2 = double_up fib5;;
val fib5_2 : int list = $[8 ; 8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$; 1; 1; 1]

Question: Length of list

- Problem: write code for the length of the list - How to start?
let length I =

Answer

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- 3 is invalid because of last pair

Functions Over Lists

\# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
\# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

9/5/17

Question: Length of list

- Problem: write code for the length of the list - How to start?
let rec length I = match I with

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length I =
match I with

Question: Length of list

- Problem: write code for the length of the list - What result do we give when I is empty?
let rec length I =
match I with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length I =
match I with [] -> 0
| (a :: bs) -> 1 + length bs

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length $\mathrm{I}=$
match I with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list - What result do we give when I is not empty? let rec length I =
match I with [] -> 0
| (a :: bs) ->

Same Length

- How can we efficiently answer if two lists have the same length?

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 = match list1 with [] -> (match list2 with [] -> true
| ($\mathrm{y}:$:ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| ($\mathrm{y}:$:ys) -> same_length xs ys)
9/5/17

Iterating over lists

\# let rec fold_left falist = match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Functions Over Lists

\# let rec map f list = match list
with [] -> []
| (h::t) -> (f h) :: (map ft);,
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;,

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x - 1) fib6;;
: int list $=[12 ; 7 ; 4 ; 2 ; 1 ; 0 ; 0]$

9/5/17

Iterating over lists

\# let rec fold_right f list $\mathrm{b}=$ match list
with [] -> b
| (x :: xs) -> fx (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();
therehi- : unit $=()$

9/5/17

Structural Recursion : List Example

\# let rec length list = match list with []-> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list xs

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Encoding Recursion with Fold

\# let rec append list1 list2 = match list1 with [] -> list2 | x::xs -> x :: append xs list2;; val append : 'a list -> 'a list -> a list = <fun>
Base Case Operation Recursive Call
\# let append list1 list2 =
fold_right (fun $x y->x$:: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
\# append $[1 ; 2 ; 3][4 ; 5 ; 6] ;$;

- : int list = [1; 2; 3; 4; 5; 6]

Mapping Recursion

- Can use the higher-order recursive map
function instead of direct recursion
\# let doubleList list =
List.map (fun x-> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;
- : int list = $[4 ; 6 ; 8]$
- Same function, but no rec

Forward Recursion: Examples

```
# let rec double_up list =
    match list
    with [] ]> [ ]
        | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let rec poor_rev list =
    match list
    with [] -> []
        | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```

9/5/17

Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x:: doubleList xs;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;
$-:$ int list $=[4 ; 6 ; 8]$

9/5/17

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list with []]-> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

9/5/17

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun x -> fun $\mathrm{p}->\mathrm{x}$ * p)
list 1 ;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

How long will it take?
Common big-O times:

- Constant time O (1)
- input size doesn't matter
- Linear time $O(n)$
- double input \Rightarrow double time
- Quadratic time $O\left(n^{2}\right)$
- double input \Rightarrow quadruple time
- Exponential time $O\left(2^{n}\right)$
- increment input \Rightarrow double time

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

Linear Time

Expect most list operations to take linear time $O(n)$

- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

9/5/17

Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

```
\# let rec naiveFib \(\mathrm{n}=\) match n
    with \(0->0\)
    | 1 -> 1
    | _ -> naiveFib ( \(\mathrm{n}-1\) ) + naiveFib ( \(\mathrm{n}-2\) ); ;
val naiveFib : int -> int = <fun>
```


An Important Optimization

Tail

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?
- Then h can return directly to f instead of g

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with []-> revlist | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [] ; ;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

An Important Optimization

- When a function call is made,

Normal
 the return address needs to be saved to the stack so we know to where to return when the call is finished

- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

9/5/17

Comparison

- poor_rev $[1,2,3]=$
- (poor_rev $[2,3])$ @ $[1]=$
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- $[3,2]$ @ $[1]=$
- 3 :: ([2] @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux [2,3] [1] =
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]
\# let rec fold_left f a list = match list with [] -> a | (x :: xs) -> fold_left f (f a x) xs;; val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left fa $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $b=$ match list with [] -> b | (x :: xs) -> fx (fold_right f xs b);
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $\mathrm{f}\left[\mathrm{x}_{1} ; \mathrm{x}_{2} ; \ldots ; \mathrm{x}_{\mathrm{n}}\right] \mathrm{b}=\mathrm{ff}_{1}\left(\mathrm{f} \mathrm{x}_{2}\left(\ldots\left(\mathrm{f} \mathrm{x}_{\mathrm{n}} \mathrm{b}\right) \ldots\right)\right)$

Folding - Tail Recursion

\# let rev list =

fold_left
(fun I -> fun x -> x :: I) //comb op
[] //accumulator cell list

Folding Functions over Lists

How are the following functions similar?
\# let rec sumlist list = match list with
[] -> $0 \mid x:: x s ~->~ x+$ sumlist xs;;
val sumlist : int list -> int = <fun>
\# sumlist [2;3;4];

- : int = 9
\# let rec prodlist list = match list with
[] -> 1 | x::xs -> x * prodlist xs;; val prodlist : int list -> int = <fun>
\# prodlist [2;3;4];;
- : int = 24

9/5/17

Folding - Forward Recursion

\# let sumlist list = fold_right (+) list 0; ;
val sumlist : int list -> int = <fun>
\# sumlist [2;3;4];;

- : int = 9
\# let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
\# prodlist [2;3;4];;
. : int = 24

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

