Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Booleans (aka Truth Values)

true;;

- -: bool = true
- # false;;
- -: bool = false
- // $\rho_7 = \{c \rightarrow 4, test \rightarrow 3.7, a \rightarrow 1, b \rightarrow 5\}$ # if b > a then 25 else 0;;
- : int = 25

Booleans and Short-Circuit Evaluation

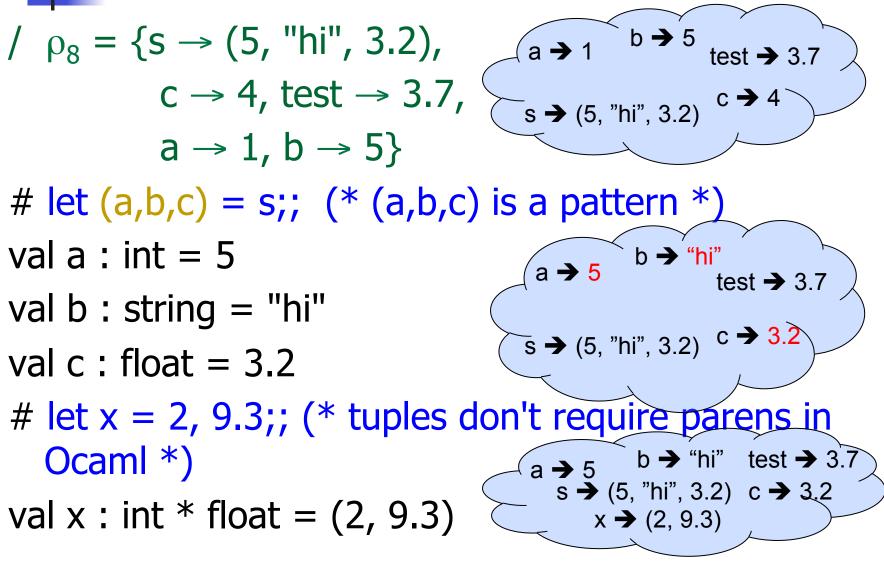
- # 3 > 1 <u>&&</u> 4 > 6;;
- : bool = false
- # 3 > 1 || 4 > 6;;
- : bool = true
- # (print_string "Hi\n"; 3 > 1) || 4 > 6;; Hi
- : bool = true
- # 3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true
- # not (4 > 6);;
- : bool = true

Tuples as Values

// $\rho_7 = \{c \rightarrow 4, \text{ test} \rightarrow 3.7, a \rightarrow 1, b \rightarrow 5 \\ a \rightarrow 1, b \rightarrow 5 \}$ # let s = (5,"hi",3.2);; val s : int * string * float = (5, "hi", 3.2)

$$\begin{array}{c} // \quad \rho_8 = \{ s \rightarrow (5, \ "hi", \ 3.2), \\ c \rightarrow 4, \ test \rightarrow 3.7, \\ a \rightarrow 1, \ b \rightarrow 5 \end{array} \right.$$

Pattern Matching with Tuples



Nested Tuples

(*Tuples can be nested *) let d = ((1,4,62),("bye",15),73.95);;val d : (int * int * int) * (string * int) * float = ((1, 4, 62), ("bye", 15), 73.95) # (*Patterns can be nested *) let $(p_{st, j}) = d;; (* _ matches all, binds nothing)$ *) val p : int * int * int = (1, 4, 62)val st : string = "bye"

Functions on tuples

let plus_pair (n,m) = n + m;;val plus pair : int * int -> int = <fun> # plus_pair (3,4);; -: int = 7# let double x = (x,x);;val double : 'a -> 'a * 'a = <fun> # double 3;; -: int * int = (3, 3) # double "hi";;

- : string * string = ("hi", "hi")

Functions on tuples

let plus_pair (n,m) = n + m;;val plus pair : int * int -> int = <fun> # plus_pair (3,4);; -: int = 7# let double x = (x,x);;val double : 'a -> 'a * 'a = <fun> # double 3;; -: int * int = (3, 3) # double "hi";;

- : string * string = ("hi", "hi")

Save the Environment!

A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

< (v1,...,vn) \rightarrow exp, ρ >

 Where ρ is the environment in effect when the function is defined (for a simple function)

Closure for plus_pair

- Assume p_{plus_pair} was the environment just before plus_pair defined
- Closure for fun (n,m) -> n + m:

<(n,m) \rightarrow n + m, ρ_{plus_pair} >

• Environment just after plus_pair defined: {plus_pair $\rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair} >$

+ ^pplus_pair

Functions with more than one argument

- # let add_three x y z = x + y + z;;
- val add_three : int -> int -> int -> int = <fun>
 # let t = add three 6 3 2;;
- val t : int = 11
- # let add_three =
 - fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

Curried vs Uncurried

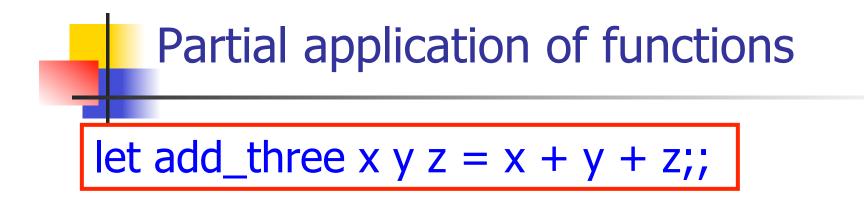
Recall

val add_three : int -> int -> int -> int = <fun>
 How does it differ from
 # let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

- add_three is *curried*;
- add_triple is uncurried

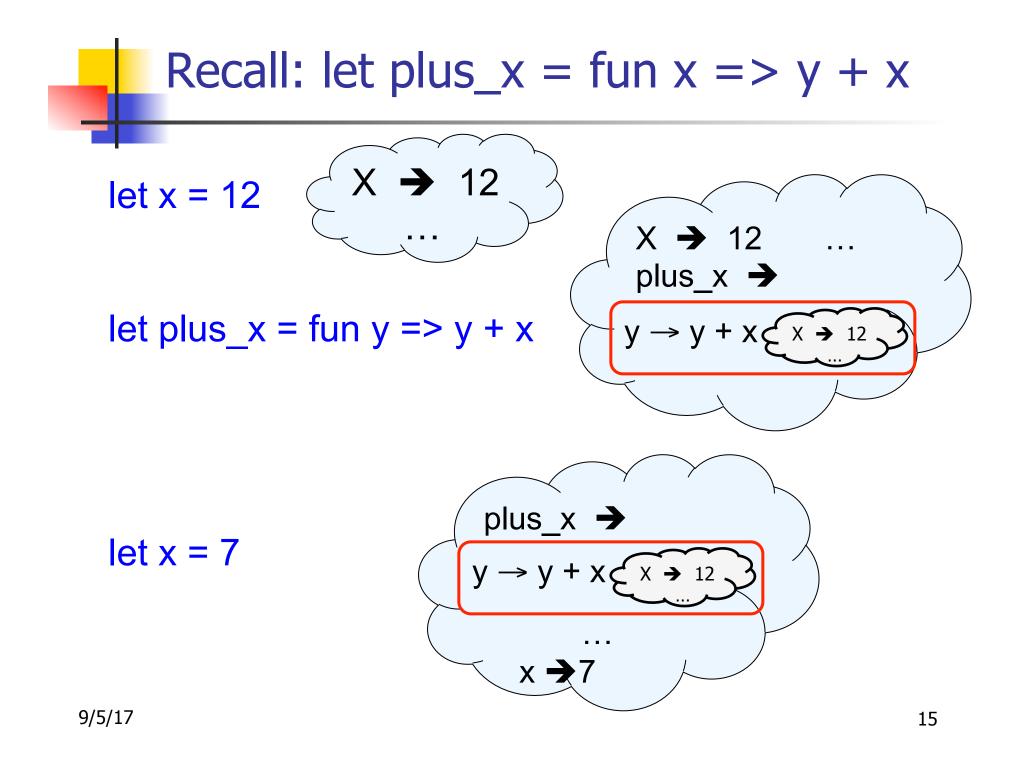
Curried vs Uncurried

This function is applied to too many arguments, maybe you forgot a `;' # fun x -> add_triple (5,4,x);; : int -> int = <fun>



let h = add_three 5 4;; val h : int -> int = <fun> # h 3;; - : int = 12 # h 7;; - : int = 16

- Partial application also called *sectioning*



Closure for plus_x

When plus_x was defined, had environment:

$$\rho_{\text{plus}_x} = \{..., x \rightarrow 12, ...\}$$

Recall: let plus_x y = y + x

is really let plus_x = fun y -> y + x

Closure for fun y -> y + x:

<y \rightarrow y + x, ρ_{plus_x} >

Environment just after plus_x defined:

{plus_x $\rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle$ } + ρ_{plus_x}

Evaluating declarations

- Evaluation uses an environment p
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with x v: $\{x \rightarrow v\} + \rho$
- Update: ρ₁ + ρ₂ has all the bindings in ρ₁ and all those in ρ₂ that are not rebound in ρ₁
 {x → 2, y → 3, a → "hi"} + {y → 100, b → 6}
 = {x → 2, y → 3, a → "hi", b → 6}

Evaluating expressions

- Evaluation uses an environment p
- A constant evaluates to itself
- To evaluate an variable, look it up in $\rho(\rho(v))$
- To evaluate uses of +, _ , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let x = e1 in e2
 - Eval e1 to v, eval e2 using $\{x \rightarrow v\} + \rho$

Evaluation of Application with Closures

- Given application expression f(e₁,...,e_n)
- In environment ρ , evaluate left term to closure, c = <(x₁,...,x_n) → b, ρ >
- (x₁,...,x_n) variables in (first) argument
- Evaluate (e₁,...,e_n) to value (v₁,...,v_n)
- Update the environment ρ to

$$\rho' = \{\mathbf{x}_1 \rightarrow \mathbf{v}_1, \dots, \mathbf{x}_n \rightarrow \mathbf{v}_n\} + \rho$$

• Evaluate body **b** in environment ρ'

Evaluation of Application of plus_x;;

Have environment:

where $\rho_{plus_x} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$

- Eval (plus_x y, ρ) rewrites to
- App (Eval(plus_x, ρ), Eval(y, ρ)) rewrites to
- App (<y \rightarrow y + x, ρ_{plus_x} >, 3) rewrites to
- Eval $(y + x, \{y \rightarrow 3\} + \rho_{plus_x})$ rewrites to
- Eval (3 + 12 , ρ_{plus_x}) = 15

Evaluation of Application of plus_pair

- Assume environment
- $\rho = \{x \rightarrow 3..., \\ plus_pair \rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair} >\} + \\ \rho_{plus_pair} \\ \bullet Eval (plus_pair (4,x), \rho) =$
- App (Eval (plus_pair, ρ), Eval ((4,x), ρ)) =
- App (<(n,m) →n + m, ρ_{plus_pair} >, (4,3)) =
- Eval (n + m, {n -> 4, m -> 3} + ρ_{plus_pair}) =
- Eval (4 + 3, {n -> 4, m -> 3} + ρ_{plus_pair}) = 7

Closure question

If we start in an empty environment, and we execute:

- let f = fun n -> n + 5;;
- (* 0 *)
- let pair_map g (n,m) = (g n, g m);;
- let f = pair_map f;;
- let a = f (4,6);;

What is the environment at (* 0 *)?

let f = fun n -> n + 5;;

$\rho_0 = \{ \mathbf{f} \rightarrow <\mathbf{n} \rightarrow \mathbf{n} + \mathbf{5}, \{ \} \} \}$

Closure question

- If we start in an empty environment, and we execute:
 - let f = fun => n + 5;;
 - let pair_map g (n,m) = (g n, g m);;
 - (* 1 *)
 - let f = pair_map f;;
 - let a = f(4,6);;

What is the environment at (* 1 *)?

 $\rho_0 = \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \}$ let pair_map g (n,m) = (g n, g m);;

Closure question

If we start in an empty environment, and we execute:

let f = fun => n + 5;;

let pair_map g (n,m) = (g n, g m);;

let f = pair_map f;;

let a = f(4,6);;

What is the environment at (* 2 *)?

 $\begin{array}{l} \rho_0 = \{f \rightarrow <n \rightarrow n + 5, \{ \} > \} \\ \rho_1 = \{ pair_map \rightarrow <g \rightarrow fun \ (n,m) \ -> \ (g \ n, g \ m), \ \rho_0 >, \\ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \\ \\ let \ f = pair_map \ f;; \end{array}$

 $\begin{array}{l} \rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \\ \rho_1 = \{ pair_map \rightarrow <g \rightarrow fun \ (n,m) \ -> \ (g \ n, \ g \ m), \ \rho_0 >, \\ f \rightarrow <n \rightarrow n + 5, \ \{ \} > \} \\ \end{array}$ $Eval(pair_map \ f, \ \rho_1) = \end{array}$

$$\begin{array}{l} \rho_{0} = \{f \rightarrow \} \\ \rho_{1} = \{pair_map \rightarrow \ (g \ n, g \ m), \ \rho_{0} >, \\ f \rightarrow \} \\ \mbox{Eval(pair_map f, \ \rho_{1}) =} \\ \mbox{App } (\ (g \ n, g \ m), \ \rho_{0} >, \\) = \end{array}$$

 $\rho_0 = \{f \to \langle n \to n + 5, \{\}\}\}$ $\rho_1 = \{\text{pair}_{map} \rightarrow \langle g \rightarrow fun(n,m) \rangle (g n, g m), \rho_0 \rangle,$ $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$ Eval(pair_map f, ρ_1) = App (<q \rightarrow fun (n,m) -> (g n, g m), ρ_0 >, $(n \rightarrow n + 5, \{ \}) =$ Eval(fun (n,m)->(g n, g m), {g \rightarrow <n \rightarrow n + 5, { }>}+ ρ_0) $= \langle (n,m) \rightarrow (g n, g m), \{g \rightarrow \langle n \rightarrow n + 5, \{\} \rangle \} + \rho_0 \rangle$ $=\langle (n,m) \rightarrow (q n, q m), \{q \rightarrow \langle n \rightarrow n + 5, \{\} \rangle$ $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$

$$\begin{array}{l} \rho_1 = \{ \text{pair}_\text{map} \rightarrow \\ \} >, \\ f \rightarrow \} \\ \mbox{let } f = \mbox{ pair}_\text{map } f;; \\ \rho_2 = \{f \rightarrow <(n,m) \rightarrow (g\ n, g\ m), \\ \quad \{g \rightarrow , \\ f \rightarrow \} >, \\ \mbox{ pair}_\text{map} \rightarrow \} >\} \end{array}$$

Closure question

If we start in an empty environment, and we execute:

let f = fun => n + 5;;

let pair_map g (n,m) = (g n, g m);;

```
let f = pair_map f;;
```

```
let a = f(4,6);;
```

```
(* 3 *)
```

What is the environment at (* 3 *)?

Final Evalution?

N

$$\begin{split} \rho_2 &= \{ f \rightarrow <(n,m) \rightarrow (g \ n, \ g \ m), \\ &\qquad \{ g \rightarrow , \\ f \rightarrow \} >, \\ pair_map \rightarrow \ (g \ n, \ g \ m), \\ &\qquad \{ f \rightarrow \} > \} \\ let a &= f \ (4,6);; \end{split}$$

Evaluate f (4,6);;

$$\begin{split} \rho_2 &= \{ f \rightarrow <(n,m) \rightarrow (g \ n, \ g \ m), \\ &\qquad \{ g \rightarrow , \\ f \rightarrow \} >, \\ pair_map \rightarrow \ (g \ n, \ g \ m), \\ &\qquad \{ f \rightarrow \} > \} \\ Eval(f \ (4,6), \ \rho_2) = \end{split}$$

Evaluate f (4,6);;

$$\begin{array}{l} \rho_2 = \{f \to <(n,m) \to (g \ n, \ g \ m), \\ \{g \to , \\ f \to \} >, \\ pair_map \to \ (g \ n, \ g \ m), \\ \{f \to \} \end{array}$$
Eval(f (4,6), ρ_2) =
$$\begin{array}{l} \text{App}(<(n,m) \to (g \ n, \ g \ m), \ \{g \to , \\ f \to \} >, \\ (4,6)) = \end{array}$$

Evaluate f (4,6);;

App(<(n,m) \rightarrow (g n, g m), {g \rightarrow <n \rightarrow n + 5, { }>, $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$ (4,6)) =Eval((g n, g m), {n \rightarrow 4, m \rightarrow 6} + $\{q \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle, \}$ $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} =$ $(App(\langle n \rightarrow n + 5, \{ \} \rangle, 4),$ App $(\langle n \rightarrow n + 5, \{ \} \rangle, 6)) =$

Evaluate f (4,6);;

 $(App(<n \rightarrow n + 5, \{ \}>, 4),$ $App (<n \rightarrow n + 5, \{ \}>, 6)) =$ $(Eval(n + 5, \{n \rightarrow 4\} + \{ \}),$ $Eval(n + 5, \{n \rightarrow 6\} + \{ \})) =$ $(Eval(4 + 5, \{n \rightarrow 4\} + \{ \}),$ $Eval(6 + 5, \{n \rightarrow 6\} + \{ \})) = (9, 11)$

Functions as arguments

let thrice f x = f (f (f x));;val thrice : ('a -> 'a) -> 'a -> 'a = <fun> # let q = thrice plus two;; val q : int -> int = <fun> # q 4;; -: int = 10# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"

Higher Order Functions

- A function is *higher-order* if it takes a function as an argument or returns one as a result
- Example:
- # let compose f g = fun x -> f (g x);;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

ThriceRecall:

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

How do you write thrice with compose?

ThriceRecall:

let thrice f x = f (f (f x));; val thrice : ('a -> 'a) -> 'a -> 'a = <fun> How do you write thrice with compose? # let thrice f = compose f (compose f f);; val thrice : ('a -> 'a) -> 'a -> 'a = <fun> Is this the only way?

Lambda Lifting

- You must remember the rules for evaluation when you use partial application
- # let add_two = (+) (print_string "test\n"; 2);;
 test
- val add_two : int -> int = <fun>
- # let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
- val add2 : int -> int = <fun>

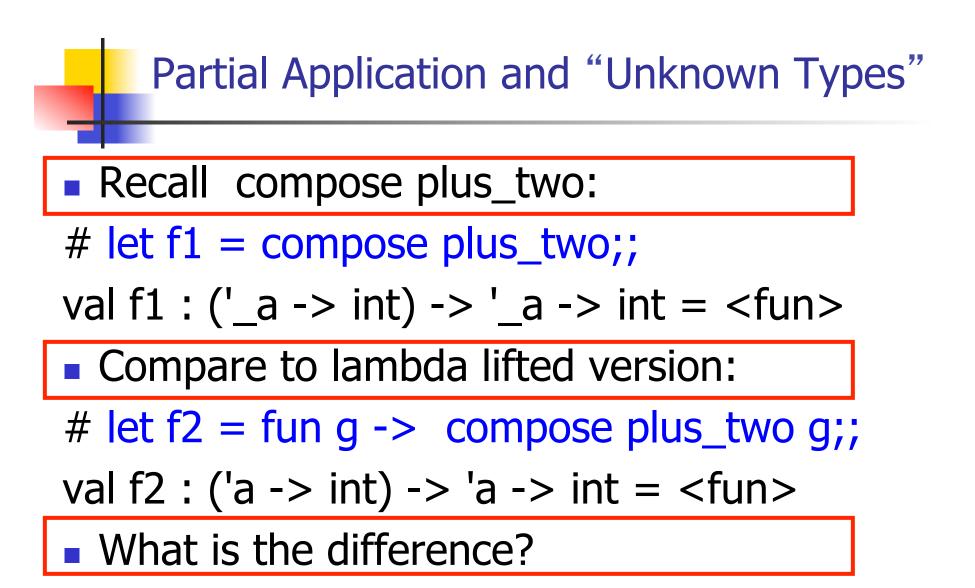
Lambda Lifting

thrice add_two 5;; - : int = 11 # thrice add2 5;; test test

test

- : int = 11

 Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied



Partial Application and "Unknown Types"

- <u>'</u>_a can only be instantiated once for an expression
- # f1 plus_two;;
- : int -> int = <fun>
- # f1 List.length;;
- Characters 3-14:
 - f1 List.length;;
 - ~~~~~~
- This expression has type 'a list -> int but is here used with type int -> int

Partial Application and "Unknown Types"

'a can be repeatedly instantiated

- # f2 plus_two;;
- : int -> int = <fun>
- # f2 List.length;;
- : '_a list -> int = <fun>

Match Expressions

let triple_to_pair triple = match triple with $(0, x, y) \rightarrow (x, y)$ $|(x, 0, y) \rightarrow (x, y)|$ $|(x, y, _) \rightarrow (x, y);;$ •Each clause: pattern on left, expression on right •Each x, y has scope of only its clause •Use first matching clause

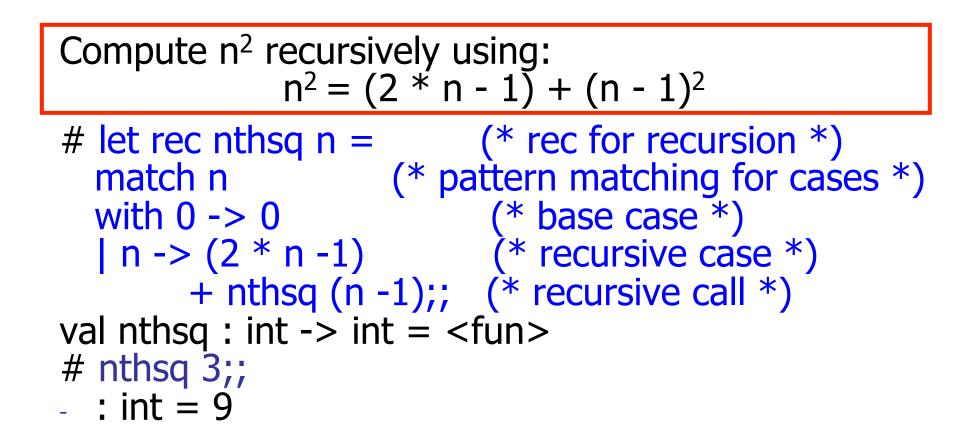
val triple_to_pair : int * int * int -> int * int =
 <fun>

Recursive Functions

- # let rec factorial n =
 - if n = 0 then 1 else n * factorial (n 1);;
 - val factorial : int -> int = <fun>
- # factorial 5;;
- : int = 120

(* rec is needed for recursive function
 declarations *)

Recursion Example



Structure of recursion similar to inductive proof

Recursion and Induction

let rec nthsq n = match n with $0 \rightarrow 0$ | n -> (2 * n - 1) + nthsq (n - 1) ;;

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

- First example of a recursive datatype (aka algebraic datatype)
- Unlike tuples, lists are homogeneous in type (all elements same type)

List can take one of two forms:

- Empty list, written []
- Non-empty list, written x :: xs
 - x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: [x] == x :: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

let fib5 = [8;5;3;2;1;1];;val fib5 : int list = [8; 5; 3; 2; 1; 1]# let fib6 = 13 :: fib5;; val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]# (8::5::3::2::1::1::[]) = fib5;; -: bool = true # fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists

Lists are Homogeneous

let bad_list = [1; 3.2; 7];; Characters 19-22: let bad_list = [1; 3.2; 7];; ^^^<</pre>

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?
- **1**. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

- Which one of these lists is invalid?
- **1**. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]
- 3 is invalid because of last pair

Functions Over Lists

let rec double_up list = match list with $[] \rightarrow []$ (* pattern before ->, expression after *) (x :: xs) -> (x :: x :: double_up xs);; val double_up : 'a list -> 'a list = <fun> # let fib5 2 = double up fib5;val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;1; 1; 1]

Functions Over Lists

- # let silly = double_up ["hi"; "there"];; val silly : string list = ["hi"; "hi"; "there"; "there"] # let rec poor_rev list = match list with [] -> [] | (x::xs) -> poor_rev xs @ [x];; val poor_rev : 'a list -> 'a list = <fun> # poor rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Problem: write code for the length of the list

How to start?

let length I =

Problem: write code for the length of the list

- How to start?
- let rec length I =
 - match I with

Problem: write code for the length of the list

- What patterns should we match against?
- let rec length I =

match I with

Problem: write code for the length of the list

What patterns should we match against?

let rec length I =

- match I with [] ->
 - | (a :: bs) ->

Problem: write code for the length of the list
 What result do we give when I is empty?
 let rec length I =
 match I with [] -> 0
 | (a :: bs) ->

Problem: write code for the length of the list
 What result do we give when I is not empty?
 let rec length I =

 match I with [] -> 0
 (a :: bs) ->

Problem: write code for the length of the list
 What result do we give when I is not empty?
 let rec length I =

 match I with [] -> 0
 (a :: bs) -> 1 + length bs

How can we efficiently answer if two lists have the same length?

Same Length

How can we efficiently answer if two lists have the same length? let rec same length list1 list2 = match list1 with [] -> (match list2 with [] -> true $|(y::ys) \rightarrow false)$ | (x::xs) -> (match list2 with [] -> false (y::ys) -> same_length xs ys)

Functions Over Lists

```
# let rec map f list =
 match list
 with [] -> []
 |(h::t) -> (f h) :: (map f t);;
val map : (a -> b) -> a list -> b list = <fun>
# map plus two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```

Iterating over lists

```
# let rec fold left f a list =
 match list
 with [] -> a
 (x :: xs) -> fold_left f (f a x) xs;;
val fold left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
  <fun>
# fold left
  (fun () \rightarrow print string)
  ()
  ["hi"; "there"];;
hithere- : unit = ()
```

Iterating over lists

```
# let rec fold_right f list b =
 match list
 with [] -> b
 |(x :: xs) \rightarrow f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
  <fun>
# fold_right
   (fun s -> fun () -> print_string s)
   ["hi"; "there"]
   ();;
therehi- : unit = ()
```

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

let rec length list = match list with [] -> 0 (* Nil case *) | x :: xs -> 1 + length xs;; (* Cons case *) val length : 'a list -> int = <fun> # length [5; 4; 3; 2];;

- -: int = 4
- Nil case [] is base case

Cons case recurses on component list xs

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

let rec double_up list = match list with [] -> [] | (x :: xs) -> (x :: x :: double_up xs);; val double up : 'a list -> 'a list = < fun ># let rec poor_rev list = match list with [] -> [] (x::xs) -> poor_rev xs @ [x];; val poor rev : 'a list -> 'a list = <fun>

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with $[] \rightarrow list2 | x::xs \rightarrow x :: append xs list2;;$ val append : 'a list -> 'a list -> 'a list = <fun> Operation | Recursive Call Base Case # let append list1 list2 = fold_right (fun x y -> x :: y) list1 list2;; val append : 'a list -> 'a list -> 'a list = <fun> # append [1;2;3] [4;5;6];; - : int list = [1; 2; 3; 4; 5; 6]

Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure
- # let rec doubleList list = match list
 with [] -> []

| x::xs -> 2 * x :: doubleList xs;;

- val doubleList : int list -> int list = <fun>
 # doubleList [2;3;4];;
- : int list = [4; 6; 8]

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion

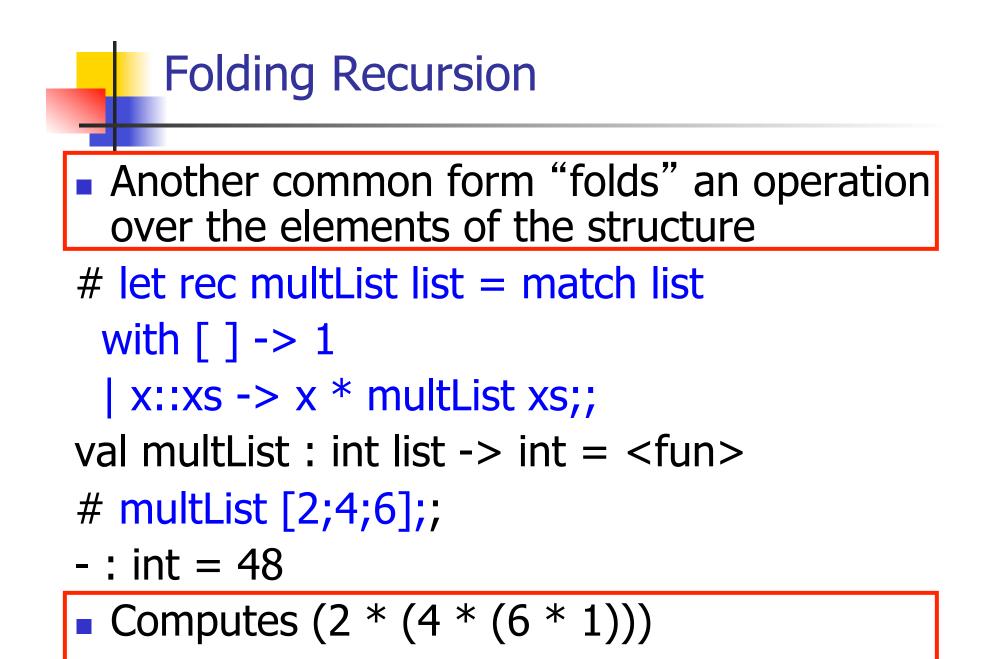
let doubleList list =

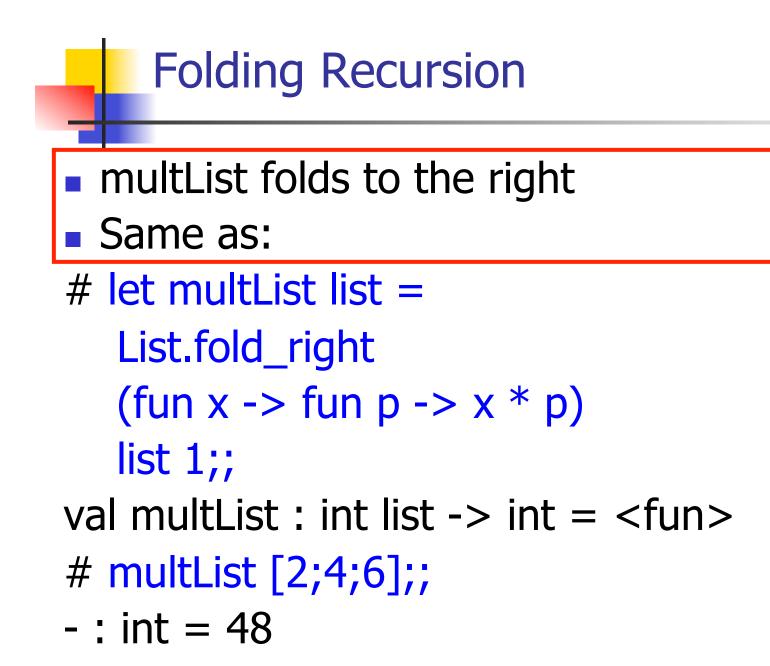
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

- # doubleList [2;3;4];;
- : int list = [4; 6; 8]

Same function, but no rec





How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

How long will it take?

Common big-O times:

- Constant time O(1)
 - input size doesn't matter
- Linear time O(n)
 - double input \Rightarrow double time
- Quadratic time $O(n^2)$
 - double input \Rightarrow quadruple time
- Exponential time O(2ⁿ)
 - increment input \Rightarrow double time

Linear Time

- Expect most list operations to take linear time O(n)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:

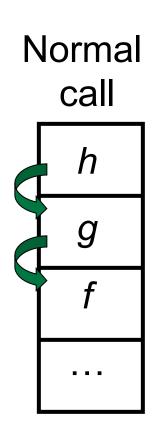
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

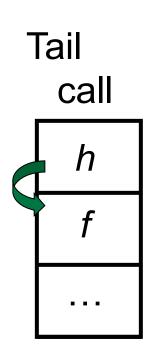
let rec naiveFib n = match n with 0 -> 0 | 1 -> 1 | _ -> naiveFib (n-1) + naiveFib (n-2);; val naiveFib : int -> int = <fun>

An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if *f* calls *g* and *g* calls *h*, but calling *h* is the last thing *g* does (a *tail call*)?

An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
 - May require an auxiliary function

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

What is its running time?

9/5/17

- 3::(2::([] @ [1])) = [3, 2, 1]
- 3 :: ([2] @ [1]) =
- [3,2] @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3] @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (poor_rev [2,3]) @ [1] =
- poor_rev [1,2,3] =

Comparison

Comparison

- rev [1,2,3] =
- rev_aux [1,2,3] [] =
- rev_aux [2,3] [1] =
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]

Folding Functions over Lists

How are the following functions similar?

let rec sumlist list = match list with

[] -> 0 | x::xs -> x + sumlist xs;;val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

- : int = 9

let rec prodlist list = match list with
[]-> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;

-: int = 24

fold_left f a [x_1 ; x_2 ;...; x_n] = f(...(f (f a x_1) x_2)...) x_n

fold_right f [x_1 ; x_2 ;...; x_n] b = f x_1 (f x_2 (...(f x_n b)...))

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9

let prodlist list = fold_right (*) list 1;; val prodlist : int list -> int = <fun> # prodlist [2;3;4];;

- : int = 24

Folding - Tail Recursion

- # let rev list =
- fold_left
 - (fun I -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

_

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition