
9/18/17 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/18/17 2

Recall

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/18/17 3

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/18/17 4

Comparison

n  poor_rev [1,2,3] =
n  (poor_rev [2,3]) @ [1] =
n  ((poor_rev [3]) @ [2]) @ [1] =
n  (((poor_rev []) @ [3]) @ [2]) @ [1] =
n  (([] @ [3]) @ [2]) @ [1]) =
n  ([3] @ [2]) @ [1] =
n  (3:: ([] @ [2])) @ [1] =
n  [3,2] @ [1] =
n  3 :: ([2] @ [1]) =
n  3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/18/17 5

Comparison

n  rev [1,2,3] =
n  rev_aux [1,2,3] [] =
n  rev_aux [2,3] [1] =
n  rev_aux [3] [2,1] =
n  rev_aux [] [3,2,1] = [3,2,1]

9/18/17 6

Continuations

n  A programming technique for all forms
of “non-local” control flow:
n  non-local jumps
n  exceptions
n  general conversion of non-tail calls to tail

calls

n  Essentially it’s a higher-order function
version of GOTO

9/18/17 7

Continuations

n  Idea: Use functions to represent the control
flow of a program

n  Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n  Function receiving the result called a
continuation

n  Continuation acts as “accumulator” for work
still to be done

9/18/17 8

Continuation Passing Style

n  Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/18/17 9

Continuation Passing Style

n  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n  A formalization of non-local control flow in
denotational semantics

n  Possible intermediate state in compiling
functional code

Why CPS?

n  Makes order of evaluation explicitly clear
n  Allocates variables (to become registers) for each

step of computation
n  Essentially converts functional programs into

imperative ones
n  Major step for compiling to assembly or byte

code
n  Tail recursion easily identified
n  Strict forward recursion converted to tail recursion

n  At the expense of building large closures in heap

9/18/17 10

Other Uses for Continuations

n  CPS designed to preserve order of
evaluation

n  Continuations used to express order of
evaluation

n  Can be used to change order of evaluation
n  Implements:

n  Exceptions and exception handling
n  Co-routines
n  (pseudo, aka green) threads

9/18/17 11 9/18/17 12

Example

n  Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

n  Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
2
- : unit = ()

Simple Functions Taking Continuations

n  Given a primitive operation, can convert it to
pass its result forward to a continuation

n  Examples:
let subk (x, y) k = k(x + y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/18/17 13

Your turn now

Try Problem 7 on MP2
Try consk

9/18/17 14

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

9/18/17 15

add_three: a different order

n  # let add_triple (x, y, z) = x + (y + z);;
n  How do we write add_triple_k to use a

different order?

n  let add_triple_k (x, y, z) k =

9/18/17 16

Your turn now

Try Problem 8 on MP4

9/18/17 17 9/18/17 18

Recursive Functions

n  Recall:
let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/18/17 19

Recursive Functions

let rec factorial n =
 let b = (n = 0) in (* First computation *)
 if b then 1 (* Returned value *)
 else let s = n – 1 in (* Second computation *)
 let r = factorial s in (* Third computation *)
 n * r in (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/18/17 20

Recursive Functions

let rec factorialk n k =
 eqk (n, 0)
 (fun b -> (* First computation *)
 if b then k 1 (* Passed value *)
 else subk (n,) 1 (* Second computation *)
 (fun s -> factorialk s (* Third computation *)
 (fun r -> timesk (n, r) k))) (* Passed value *)
val factorialk : int -> int = <fun>
factorialk 5 report;;
120
- : unit = ()

9/18/17 21

Recursive Functions

n  To make recursive call, must build
intermediate continuation to
n  take recursive value: r
n build it to final result: n * r
n And pass it to final continuation:
n  times (n, r) k = k (n * r)

Example: CPS for length

let rec length list = match list with [] -> 0
 | (a :: bs) -> 1 + length bs
What is the let-expanded version of this?

9/18/17 22

Example: CPS for length

let rec length list = match list with [] -> 0
 | (a :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list = match list with [] -> 0
 | (a :: bs) -> let r1 = length bs in 1 + r1

9/18/17 23

Example: CPS for length

#let rec length list = match list with [] -> 0
 | (a :: bs) -> let r1 = length bs in 1 + r1
What is the CSP version of this?

9/18/17 24

Example: CPS for length

#let rec length list = match list with [] -> 0
 | (a :: bs) -> let r1 = length bs in 1 + r1
What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0
 | x :: xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- : unit = ()

9/18/17 25

Your turn now

Try Problem 12 on MP2

9/18/17 26

CPS for Higher Order Functions

n  In CPS, every procedure / function takes a
continuation to receive its result

n  Procedures passed as arguments take
continuations

n  Procedures returned as results take
continuations

n  CPS version of higher-order functions must
expect input procedures to take
continuations

9/18/17 27

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?

9/18/17 28

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k =

9/18/17 29

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> true

9/18/17 30

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true

9/18/17 31

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
 | (x :: xs) -> pk x
 (fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/17 32

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
 | (x :: xs) -> pk x
 (fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/17 33

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
 | (x :: xs) -> pk x
 (fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/17 34

Example: all

#let rec all (p, l) = match l with [] -> true
 | (x :: xs) -> let b = p x in
 if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n  What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
 | (x :: xs) -> pk x
 (fun b -> if b then allk (pk, xs) k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

9/18/17 35 9/18/17 36

Terms

n  A function is in Direct Style when it returns its
result back to the caller.

n  A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

n  A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n  Instead of returning the result to the caller, we
pass it forward to another function.

9/18/17 37

Terminology

n  Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
n  if (x>3) then x + 2 else x - 4
n  let x = 5 in x + 4

n  Tail Call: A function call that occurs in
tail position
n  if (h x) then f x else (x + g x)

9/18/17 38

Terminology

n  Available: A function call that can be
executed by the current expression

n  The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n  if (h x) then f x else (x + g x)
n  if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/18/17 39

CPS Transformation

n  Step 1: Add continuation argument to any function
definition:
n  let f arg = e ⇒ let f arg k = e
n  Idea: Every function takes an extra parameter

saying where the result goes

n  Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:
n  return a ⇒ k a
n  Assuming a is a constant or variable.
n  “Simple” = “No available function calls.”

9/18/17 40

CPS Transformation

n  Step 3: Pass the current continuation to every
function call in tail position
n  return f arg ⇒ f arg k
n  The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

n  Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)
n  return op (f arg) ⇒ f arg (fun r -> k(op r))
n  op represents a primitive operation

n  return f(g arg) ⇒ g arg (fun r-> f r k)

9/18/17 41 9/18/17 42

Example

Before:
let rec add_list lst =
match lst with
 [] -> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =
 (* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
 (* rule 3 *)
| x :: xs -> add_listk xs
 (fun r -> k ((+) x r));;
 (* rule 4 *)

9/18/17 43

CPS for sum

let rec sum list = match list with [] -> 0
 | x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>

9/18/17 44

CPS for sum

let rec sum list = match list with [] -> 0
 | x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0
 | x :: xs -> let r1 = sum xs in x + r1;;

9/18/17 45

CPS for sum

let rec sum list = match list with [] -> 0
 | x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0
 | x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0
 | x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

9/18/17 46

CPS for sum

let rec sum list = match list with [] -> 0
 | x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0
 | x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0
 | x :: xs -> sumk xs (fun r1 -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20

- : unit = ()

Other Uses for Continuations

n  CPS designed to preserve order of
evaluation

n  Continuations used to express order of
evaluation

n  Can be used to change order of evaluation
n  Implements:

n  Exceptions and exception handling
n  Co-routines
n  (pseudo, aka green) threads

9/18/17 47 9/18/17 48

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =
 match list with [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero
 else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/18/17 49

Exceptions - Example

let list_mult list =
 try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

9/18/17 50

Exceptions

n When an exception is raised
n The current computation is aborted
n Control is “thrown” back up the call
stack until a matching handler is
found

n All the intermediate calls waiting for a
return values are thrown away

9/18/17 51

Implementing Exceptions

let multkp (m, n) k =
 let r = m * n in
 (print_string "product result: ";
 print_int r; print_string "\n";
 k r);;
val multkp : int (int -> (int -> 'a) -> 'a =

<fun>

9/18/17 52

Implementing Exceptions

let rec list_multk_aux list k kexcp =
 match list with [] -> k 1
 | x :: xs -> if x = 0 then kexcp 0
 else list_multk_aux xs
 (fun r -> multkp (x, r) k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/18/17 53

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

