
1

8/30/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa Gunter

8/30/2018 2

Contact Information – Sasa Misailovic

 Office: 4110 SC

 Office hours:

 Tuesday, Thursday 8:30am – 9:30am

 Also by appointment

 Email: misailo@illinois.edu

8/30/2018 3

Course Website

 https://courses.engr.illinois.edu/cs421/fa2018/CS421A

 Main page - summary of news items

 Policy - rules governing course

 Lectures - syllabus and slides

 MPs - information about assignments

 Exams

 Unit Projects - for 4 credit students

 Resources - tools and helpful info

 FAQ

Some Course References

 No required textbook

 Some suggested references

8/30/2018 4

8/30/2018 6

Course Grading

 Assignments 20%

 About 12 Web Assignments (WA) (~7%)

 About 6 MPs (in Ocaml) (~7%)

 About 5 Labs (~6%)

 All WAs and MPs Submitted through PrairieLearn

 Late submission penalty: 20%

 Labs in Computer-Based Testing Center (Grainger)

 Self-scheduled over a three day period

 No extensions beyond the three day period

 Fall back: Labs become MPs

8/30/2018 7

Course Grading

 2 Midterms - 20% each

 Labs in Computer-Based Testing Center (Grainger)

 Self-scheduled over a three day period

 No extensions beyond the three day period

 Dates: Oct 2-4 (Midterm 1) Nov 6-8 (Midterm 2)

 Fall back: In class backup dates – Oct 9, Nov 13

 DO NOT MISS EXAM DATES!

 Final 40% - Dec 19, 8:00am – 11:00am (nominally)

 Will likely use CBTF for Final (3 day window)

 Percentages are approximate

https://courses.engr.illinois.edu/cs421/fa2017/CS421A
https://courses.engr.illinois.edu/cs421/fa2018/CS421A

2

8

Course Assingments – WA & MP

 You may discuss assignments and their solutions
with others

 You may work in groups, but you must list
members with whom you worked if you
share solutions or solution outlines

 Each student must write up and turn in
their own solution separately

 You may look at examples from class and other
similar examples from any source – cite
appropriately
 Note: University policy on plagiarism still holds - cite

your sources if you are not the sole author of your
solution

8/30/2018 9

Course Objectives

 New programming paradigm
 Functional programming

 Environments and Closures

 Patterns of Recursion

 Continuation Passing Style

 Phases of an interpreter / compiler
 Lexing and parsing

 Type systems

 Interpretation

 Programming Language Semantics
 Lambda Calculus

 Operational Semantics

 Axiomatic Semantics

Programming Languages & Compilers

8/30/2018 10

I

New

Programming

Paradigm

II

Language

Translation

III

Language

Semantics

Three Main Topics of the Course

Programming Languages & Compilers

8/30/2018 11

I

New

Programming

Paradigm

II

Language

Translation

III

Language

Semantics

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/30/2018 12

Functional

Programming

Environments

and

Closures

Continuation

Passing

Style

Patterns of

Recursion

I : New Programming Paradigm

Programming Languages & Compilers

8/30/2018 13

Functional

Programming

Environments

and

Closures

Continuation

Passing

Style

Patterns of

Recursion

Order of Evaluation

Specification to Implementation

3

Programming Languages & Compilers

8/30/2018 14

Lexing and

Parsing

Type

Systems

Interpretation

II : Language Translation

Programming Languages & Compilers

8/30/2018 15

Lexing and

Parsing

Type

Systems

Interpretation

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/30/2018 16

Operational

Semantics

Lambda

Calculus

Axiomatic

Semantics

III : Language Semantics

Programming Languages & Compilers

8/30/2018 17

Operational

Semantics

Lambda

Calculus

Axiomatic

Semantics

CS422
CS426

CS477

Order of Evaluation

Specification to Implementation

8/30/2018 18

OCAML

 Locally:

 Compiler is on the EWS-linux systems at

/usr/local/bin/ocaml

 Be sure to module load ocaml/2.07.0 in EWS!

 Globally:

 Main CAML home: http://ocaml.org

 To install OCAML on your computer see:

http://ocaml.org/docs/install.html

 Or use one of the online OCAML compilers…

8/30/2018 19

References for OCaml

 Supplemental texts (not required):

 The Objective Caml system release 4.07, by
Xavier Leroy, online manual

 Introduction to the Objective Caml
Programming Language, by Jason Hickey

 Developing Applications With Objective Caml,
by Emmanuel Chailloux, Pascal Manoury, and
Bruno Pagano, on O’Reilly

 Available online from course resources

http://ocaml.org
http://ocaml.org/docs/install.html

4

8/30/2018 20

Why learn OCAML?

 Many features not clearly in languages you have already

learned

 Assumed basis for much research in programming

language research

 OCAML is particularly efficient for programming tasks

involving languages (eg parsing, compilers, user

interfaces)

Why Learn OCAML?

 Industrially Relevant: Jane Street trades billions

of dollars per day using OCaml programs

 Similar languages: Microsoft F#, SML, Haskell,

Scala, Scheme

 Who uses functional programming?

 Google – MapReduce

 Microsoft – LinQ

 Twitter – Scala

 Bonus: who likes set comprehensions in Python?

8/30/2018

>>> squares = [x**2 for x in range(10)]

8/30/2018 22

OCAML Background

 CAML is European descendant of original ML

 American/British version is SML

 O is for object-oriented extension

 ML stands for Meta-Language

 ML family designed for implementing theorem
provers (back in 1970s)

 It was the meta-language for programming the
“object” language of the theorem prover

 Despite obscure original application area, OCAML is a
full general-purpose programming language

8/30/2018 23

Session in OCAML

% ocaml

Objective Caml version 4.07

_

(* Read-eval-print loop; expressions and declarations *)

2 + 3;; (* Expression *)

- : int = 5

3 < 2;;

- : bool = false

8/30/2018 24

No Overloading for Basic Arithmetic Operations

15 * 2;;

- : int = 30

1.35 + 0.23;; (* Wrong type of addition *)

Characters 0-4:

1.35 + 0.23;; (* Wrong type of addition *)

^^^^

Error: This expression has type float but an expression
was expected of type int

1.35 +. 0.23;;

- : float = 1.58

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)

Characters 0-3:

1.0 * 2;;

^^^

Error: This expression has type float but an expression
was expected of type int

1.0 *. 2;; (* No Implicit Coercion *)

Characters 7-8:

1.0 *. 2;;

^^

Error: This expression has type int but an expression was
expected of type float
8/30/2018 25

5

8/30/2018 26

Sequencing Expressions

"Hi there";; (* has type string *)

- : string = "Hi there"

print_string "Hello world\n";; (* has type unit *)

Hello world

- : unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)

Bye

- : int = 25

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)

val x : int = 5

let test = 3 < 2;;

val test : bool = false

let a = 1 let b = a + 4;; (* Sequence of dec *)

val a : int = 1

val b : int = 5

8/30/2018 27

8/30/2018 28

Environments

 Environments record what value is associated with a

given identifier

 Central to the semantics and implementation of a

language

 Notation

 = {name1  value1, name2 value2, …}

Using set notation, but describes a partial function

 Implementation: Often stored as list, or stack

 To find value start from left and take first match

Environments

8/30/2018 29

X  3

y  17

name  “Steve”

b  true

region  (5.4, 3.7)

id  {Name = “Paul”,

Age = 23,

SSN = 999888777}

. . .

8/30/2018 30

Global Variable Creation

2 + 3;; (* Expression *)

// doesn’t affect the environment

let test = 3 < 2;; (* Declaration *)

val test : bool = false

// 1 = {test  false}

let a = 1 let b = a + 4;; (* Seq of dec *)

// 2 = {b  5, a  1, test  false}

New Bindings Hide Old

// 2 = {b  5, a  1, test  false}

let test = 3.7;;

 What is the environment after this declaration?

8/30/2018 32

6

New Bindings Hide Old

// 2 = {b  5, a  1, test  false}

let test = 3.7;;

 What is the environment after this declaration?

// 3 = {test  3.7, a  1, b  5}

8/30/2018 33

Environments

8/30/2018 34

b  5

test  3.7

a  1

8/30/2018 36

Local Variable Creation

// 3 = {test  3.7, a  1, b  5}

let b = 5 * 4

// 4 = {b  20, test  3.7, a  1}

in 2 * b;;

- : int = 40

// 5 = 3= {test  3.7, a  1, b  5}

b;;

- : int = 5

b  5

test  3.7

a  1

b  5

test  3.7

a  1
b  20

b  5

test  3.7

a  1

// 5 = {test  3.7, a  1, b  5}

let c =

let b = a + a

in b * b;;

b;;

8/30/2018 37

Local let binding

// 5 = {test  3.7, a  1, b  5}

let c =

let b = a + a

// 6 = {b  2} + 5

// = {b  2, test  3.7, a  1}

in b * b;;

val c : int = 4

// 7 = {c  4, test  3.7, a  1, b  5}

b;;

- : int = 5

8/30/2018 38

Local let binding

b  5

test  3.7a  1

// 5 = {test  3.7, a  1, b  5}

let c =

let b = a + a

// 6 = {b  2} + 5

// = {b  2, test  3.7, a  1}

in b * b;;

val c : int = 4

// 7 = {c  4, test  3.7, a  1, b  5}

b;;

- : int = 5

b  5

test  3.7a  1

8/30/2018 39

Local let binding

b  5

test  3.7a  1

b  2

7

// 5 = {test  3.7, a  1, b  5}

let c =

let b = a + a

// 6 = {b  2} + 5

// = {b  2, test  3.7, a  1}

in b * b;;

val c : int = 4

// 7 = {c  4, test  3.7, a  1, b  5}

b;;

- : int = 5

b  5

test  3.7a  1

8/30/2018 40

Local let binding

b  5

test  3.7a  1

b  2

b  5

test  3.7a  1

c  4

8/30/2018 42

Booleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

// 7 = {c  4, test  3.7, a  1, b  5}

if b > a then 25 else 0;;

- : int = 25

8/30/2018 43

Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;

- : bool = false

3 > 1 || 4 > 6;;

- : bool = true

not (4 > 6);;

- : bool = true

(print_string "Hi\n"; 3 > 1) || 4 > 6;;

Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;

- : bool = true

Tuples as Values

// 0 = {c  4, a  1, b  5}

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

//  = {s  (5, "hi", 3.2), c  4, a  1, b  5}

8/30/2018 44

Pattern Matching with Tuples

//  = {s  (5, "hi", 3.2), a  1, b  5, c  4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)

val x : int * float = (2, 9.3)

8/30/2018 45

Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =

((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p, (st,_), _) = d;;
(* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"

8/30/2018 46

8

8/30/2018 48

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

8/30/2018 49

Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19

8/30/2018 50

Nameless Functions (aka Lambda Terms)

fun n -> n + 2;;

(fun n -> n + 2) 17;;

- : int = 19

8/30/2018 51

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

let plus_two = fun n -> n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- : int = 16

First definition syntactic sugar for second

8/30/2018 52

Using a nameless function

(* An application *)

(fun x -> x * 3) 5;;

: int = 15

(* As data *)

((fun y -> y +. 2.0), (fun z -> z * 3));;

- : (float -> float) * (int -> int) = (<fun>, <fun>)

Note: in fun v -> exp(v), scope of variable is only
the body exp(v)

8/30/2018 53

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

What is the result?

X  12

…

9

8/30/2018 54

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

- : int = 15

8/30/2018 55

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

What is the result this time?

8/30/2018 56

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

What is the result this time?

X  12

…

X  7

…

8/30/2018 57

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

- : int = 15

8/30/2018 58

Question

 Observation: Functions are first-class values

in this language

 Question: What value does the environment

record for a function variable?

 Answer: a closure

8/30/2018 59

Save the Environment!

 A closure is a pair of an environment and an

association of a sequence of variables (the input

variables) with an expression (the function

body), written:

< (v1,…,vn)  exp,  >

 Where  is the environment in effect when the

function is defined (for a simple function)

10

Recall: let plus_x = fun x => y + x

8/30/2018 60

X  12

…
let x = 12

let plus_x = fun y -> y + x

let x = 7

X  12 …

plus_x 

X  12

…
y  y + x

plus_x 

…

x 7

X  12

…
y  y + x

8/30/2018 61

Closure for plus_x

 When plus_x was defined, had environment:

plus_x = {…, x  12, …}

 Recall: let plus_x y = y + x

is really let plus_x = fun y -> y + x

 Closure for fun y -> y + x:

<y  y + x, plus_x >

 Environment just after plus_x defined:

{plus_x  <y  y + x, plus_x >} + plus_x

Like set

union!

(but subtle

differences;

new decl.

replaces old)

8/30/2018 62

Functions with more than one argument

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;

val t : int = 11

let add_three =

fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>

plus_pair (3,4);;

- : int = 7

let twice x = (x,x);;

val twice : 'a -> 'a * 'a = <fun>

twice 3;;

- : int * int = (3, 3)

twice "hi";;

- : string * string = ("hi", "hi")

8/30/2018 63

8/30/2018 64

Curried vs Uncurried

 Recall
let add_three u v w = u + v + w;;

val add_three : int -> int -> int -> int = <fun>

 How does it differ from
let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

 add_three is curried;

 add_triple is uncurried

8/30/2018 65

Curried vs Uncurried

add_three 6 3 2;;

- : int = 11

add_triple (6,3,2);;

- : int = 11

add_triple 5 4;;

Characters 0-10: add_triple 5 4;;

^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

fun x -> add_triple (5,4,x);;

: int -> int = <fun>

11

8/30/2018 66

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;

val h : int -> int = <fun>

h 3;;

- : int = 12

h 7;;

- : int = 16

Partial application also called sectioning
8/30/2018 67

•Each clause: pattern on

left, expression on right

•Each x, y has scope of

only its clause

•Use first matching clause

Match Expressions

let triple_to_pair triple =

match triple

with (0, x, y) -> (x, y)

| (x, 0, y) -> (x, y)

| (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =

<fun>

