Tuples as Values

Programming Languages and Compilers //1 Po = {C(- :) a *)1’ b5}
let = (5,"hi",3.2);;
(CS 421) ° .

val s : int * string * float = (5, "hi", 3.2)
Sasa Misailovic g?%
4110 SC, UIluC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

// p=A{s —> (5, "hi", 3.2), c > 4, a > 1, b > 5}

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa L Gunter

9/6/2018 1 9/6/2018 2
Pattern Matching with Tuples Nested Tuples
// p=A{s > (5, "hi", 3.2), a > 1, b > 5, ¢ > 4} # (*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
let (a,b,c) = s;; (* (a,b,c) is a pattern *) val d : (int * int * int) * (string * int) * float =
val a : int = 5 ((1, 4, 62), ("bye", 15), 73.95)
val b : string = "hi"
val ¢ : float = 3.2 # (*Patterns can be nested *)
let (p, (st,_), _) =d;;
let (a, _,) = s;; (* _ matches all, binds nothing *)
val a : int = 5 val p : int * int * int = (1, 4, 62)

val st : string = "bye"
let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)

9/6/2018 3 9/6/2018 4

Functions on tuples Save the Environment!

let plus_pair (n,m) = n + m;;

. . . . = A closure is a pair of an environment and an
val plus_pair : int * int -> int = <fun> P

association of a sequence of variables (the input
variables) with an expression (the function
body), written:

plus_pair (3,4);;
- rint =7

let twice x = (X,X);;
val twice : 'a -> 'a * 'a = <fun> < (v1,..,vn) — exp, p >
) = Where p is the environment in effect when the
twice 3;;
S :int * int = (3, 3) function is defined (for a simple function)
twice "hi";;
- : string * string = ("hi", "hi")

9/6/2018 5 9/6/2018 6

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Closure for plus_pair

= Assume P i Was the environment just before
plus_pair defined and recall

= let plus_pair (n,m) =n + m;;

= Closure for fun (n,m) -> n + m:

<(n,m) =+ M, Pous paie> Like set
union!
(but subtle
differences,

/ see slide 17)

{plus_pair — <(n,m) > n + m, Pplus_pair >} *+ Pplus_pair

= Environment just after plus_pair defined:

9/6/2018 7

Curried vs Uncurried

= Recall
let add_three u v w =u+ Vv + w;;
val add_three : int -> int -> int -> int = <fun>

= How does it differ from
let add_triple (u,v,W) = U + V + W;;
val add_triple : int * int * int -> int = <fun>

= add_three is curried;
= add_triple is uncurried

9/6/2018 9

Partial application of functions

let add_three xy z = x +y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>

h 3;;

- int = 12

#h 7;;
:int = 16

Partial application also called sectioning
9/6/2018 11

Functions with more than one argument

let add_three xy z = x +y + z;;

val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;
val t : int = 11

let add_three =
fun x -> (fun'y -> (fun z -> X +y + 2z));;

val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

9/6/2018

Curried vs Uncurried
add_three 6 3 2;;
- tint =11

add_triple (6,3,2);;
- :int =11

add_triple 5 4;;
Characters 0-10: add_triple 5 4;;

AANANAAAAAN

This function is applied to too many arguments,
maybe you forgot a ;'

fun x -> add_triple (5,4,x);;
: int -> int = <fun>

9/6/2018

Recall: let plus_x = funy ->y + x

letx =12

i

el

letx=7

9/6/2018

Closure for plus_x

= When plus_x was defined, had environment:
pp|us_x={..., x—12,...}
= Recall: let plus_xy =y +x
is really let plus_x = funy ->y + x
= Closure for funy ->y + x:
<y >y +x, Pplus_x >

= Environment just after plus_x defined:

{plus_x > <y >y +x, Pplus_x >+ Pplus_x

9/6/2018 13

Evaluating Declarations

= Evaluation uses a starting environment p
= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v

= Update p with the mapping from x to v: {x — v} +p

/I Definition of + on environments! |

= Update: p,+ p, has all the bindings in p, and all those
in p, that are not rebound in p,

{x > 2, y—>3, a—-> “hi”}
+ {y > 100, b — 6}
={x > 2,y >3, a-> “i”, b > 6}

9/6/2018 15

Evaluating Expressions (Rules)
= Evaluation uses an environment p

= A constant evaluates to itself
= To evaluate a variable x, look it up in p i.e., use p(x)
= To evaluate tuples, evaluate each tuple element

= To evaluate uses of +, _, et, first eval the arguments,
then do the operation

= To evaluate a local declaration: let x = el in e2
= Evaluate el to v, evaluate e2 using {x — v} + p

= Function application (f x) -- see next slide

9/6/2018 17

Evaluation

= Running Ocaml source:
= Parse the program to detect each expression
= Keep an internal environment at each time step

= For each expression, interpret the program using the
(mathematical) function Eval

= Nice property of Ocaml: everything is a declaration or
an expression!

= How does Eval (expression, environment) work:
= Evaluation uses a starting environment p

= Define the rules for evaluating declarations, constants,
arithmetic expressions, function applications...
9/6/2018 14

Evaluating Declarations

= Evaluation uses a starting environment p
= To evaluate a (simple) declaration let x = e

= Evaluate expression e in p to value v

= Update p with the mapping from x to v: {x — v} +p

Warm-up: we evaluate this case:
p={x=2}
let y = 2*x+1;;
p={x=~>2;y->5%}

9/6/2018 16

Evaluation of Function Application with Closures

Function defined as: let f (x|, ... x,)= body
Function application: f (e, ..., e);
Let us define Eval(f (e, ..., €,), p):

= In the environment p, evaluate the left term (f) to closure, i.e.,
¢ = <(x,,...,X,) = body, p*>

Evaluate the arguments in the application e, ... e, to their values
V|,...,V, in the environment p

= Call helper function App(Closure, Value) to evaluate the
function body (body) in the environment p*

= Conjoin the mapping of the arguments to values with the environment p*
’ «
P = {X > Vi X, OV} p*

= The App then calls Eval again for the expressions in body in the env. p',g

Evaluation of Application of plus_x;;

= Have environment:

P = {Plus X —> <Y Y + %, Ppiys x> o0 ¥ > 3}

where Pplus_x ={x—>12,...,y>24,..}

= Eval (plus_xy, p) rewrites to

= App (Eval(plus_x, p), Eval(y, p)) rewrites to
= App (Sy -y + X%, Pplus_x > 3) rewrites to
= Eval (y + x, {y — 3} *+Pplus x) rewrites to

= Eval B+ 12, pyiys) = 15

9/6/2018

Closure question

= If we start in an empty environment, and we
execute:
let f = fun n -> n + 5;;
(* e %)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
What is the environment at (* 0 *)?

9/6/2018

Closure question

= If we start in an empty environment, and we
execute:
let £ = fun n -> n + 5;;
let pair_map g (n,m) = (g n, g m);;
(*1%)
let f = pair_map f;;
let a = f (4,6);;

What is the environment at (* | *)?

9/6/2018

Evaluation of Application of plus_pair

= Assume environment

p={x—>3, .,

plus_pair —<(n,m) —n + M, Py pair>} + Pplus_pair

= Eval (plus_pair (4,x), p)=

= App (Eval (plus_pair, p), Eval ((4,x), p)) =
= App (<(n,m) —n + M, puiy pair>s (4,3)) =

= Eval (n +m, {n -> 4, m -> 3} + pyius pair) =

= Eval (4 + 3, {n -> 4, m -> 3} + poius pair) = 7

9/6/2018

Answer

pstart = {}
letf=funn->n+5;

po={f><n—>n+5{}>}

9/6/2018

Answer

pp = {f > <n—>n+5, { P}
let pair_map g (n,m) = (g n, g m);;

p= o
f><n >n+5, {3},
pair_map —
<g — (fun (n,m) -> (g n, g m)),
{f > <n > n+5, { p}

9/6/2018

20

22

24

Closure question

= If we start in an empty environment, and we
execute:
let f = fun n ->n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 %)
let a = f (4,6);;
What is the environment at (* 2 *)?

9/6/2018

Evaluate pair_map f

{f > <n > n+5, { P}

{f > <n >n+5, {3},

pair_map —
<g — (fun (n,m) -> (g n, g m)),
{f > <n > n+5, { PP}

let f = pair_map f;;

Po =
p1 =

Eval(pair_map f, p,) =

9/6/2018

Evaluate pair_map f

{f > <n>n+5, { P}

{f > <n>n+5, {3},

pair_map —
<g — (fun (n,m) -> (g n, gm)),
{f > <n > n+5, { P}

let £ = pair_map f;;

Pe =
pP1 =

Eval(pair_map f, p|) =
App (<g—>fun (nm) > (gn, gm), pe> <n > n +5,{}>) =

Eval(fun (n,m)->(g n, g m), {g><n—n + 5, { }>}+p) =
<(n,m) —>(g n, g m), {g><n—n + 5, { }>}+py> =
<(n,m) —>(g n, g m), {g><n—>n +5,{}> fo><n—-n +5,{}>}

9/6/2018

Evaluate pair_map f

{f ><n>n+5, { P}

{f > <n—>n+5, {3},

pair_map —
<g — (fun (n,m) -> (g n, gm)),
{f > <n—>n+5, { P}

let f = pair_map f;;

Po =
p1 =

25 9/6/2018 26

Evaluate pair_map f

{f > <n > n+5, { P}

{f > <n>n+5, {3},

pair_map —
<g — (fun (n,m) -> (g n, g m)),
{f > <n > n+5, { P}

let f = pair_map f;;

Po =
P1

Eval(pair_map f, p|) =
App (<g—-fun (nm) -> (g n, gm), pp>, <n > n +5,{}>) =

27 9/6/2018 28

Answer

{f > <n->n+5, { P}

{f ><n>n+5, {3},

pair_map —
<g = (fun (n,m) -> (g n, gm)),
{f > <n > n+5, { P}

let f = pair_map f;;

p, = {f - <(n,m) >(gn, gm,

{g > <n > n+5, {3},
fo><n-o>n+5 { PP,
pair_map — <g — fun (n,m) -> (g n, g m),

{f ><n > n+5, { P}

Pe =
P1

¥

29 9/6/2018 30

Closure question

= If we start in an empty environment, and we
execute:

let f = fun n -> n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 %)
What is the environment at (* 3 *)?

9/6/2018 31

Evaluate f (4,6);

po = {f = <(n,m) >(gn, gm,
{g > <n>n+5, {3},
f><n—>n+5, { P>},
pair_map — <g — fun (n,m) -> (g n, g m),
{f ><n >n+5, { P}

}
let a = f (4,6);;

Eval(f (4,6), p,) =

9/6/2018 33

Evaluate f (4,6);

App(<(n,m) >(g n, g m), {g > <n > n+5, {1}>
f > <n > n+5,{ P},

(4,6)) =

Eval((gn, gm), {n > 4, m > 6} +

{g > <n->n+5, {1},

f o><n>n+5, {P}) =
(App(<n > n + 5, { }>, 4),
App (<n > n + 5, { }>, 6)) =

9/6/2018 35

Final Evalution?

p, = {f = <«(n,m) >(gn, gm,
{g > <n > n+5, {3},
f><n >n+5,{Ppp,
pair_map - <g — fun (n,m) -> (g n, g m),
{f > <n > n+5, { P}

}
let a = f (4,6);;

9/6/2018 32

Evaluate f (4,6);

py = {f = <«(n,m) >(g n, g m,
{g > <n >n+5, {3}
f><n>n+5,{Pp,
pair_map — <g — fun (n,m) -> (g n, g m),
{f > <n > n+5, { P}

}
let a = f (4,6);;

Eval(f (4,6), p;) =
App(<(n,m) =>(g n, g m), {g > <n > n+5, { P,
f><n—>n+5,{Ppp

(4,6)) = 3

Evaluate f (4,6);

(App(<n — n + 5, { }>, 4),
App (<n > n + 5, { }>, 6)) =

(Eval(n + 5, {n —> 4} + { }),
Eval(n + 5, {n -> 6} + { })) =

(Eval(4 + 5, {n > 4} + { }),
Eval(6 + 5, {n —> 6} + { })) = (9, 11)

Finally:
ps = {a -> (9, 11)} + p,

9/6/2018 36

Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a ->

a = <fun>

let g = thrice plus_two;; (* plus_two x is x+2 *)

val g : int -> int = <fun>

#g4;;
- :int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

9/6/2018 37

Thrice

m Recall:

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

= How do you write thrice with compose?
let thrice f = compose f (compose f f);;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

9/6/2018 39

Lambda Lifting

Higher Order Functions

= A function is higher-order if it takes a function as
an argument or returns one as a result

= You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>

let add2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

9/6/2018 41

= Example:

let compose f g = fun x -> f (g Xx);;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
= <fun>

s The type (a->'b) -> (c->"a) ->'c->'bisa
higher order type because of
(a->'b)and (‘c->"a)and ->'c->'b

9/6/2018 38

Lambda Lifting

(+)
- ¢ int -> int -> int = <fun>

let add_two = (+) (print_string "test\n"; 2);;

let add2 = (* lambda lifted *)
fun x -> (+) (print_string "test\n"; 2) x;;

9/6/2018 40

Lambda Lifting

thrice add_two 5;;
cint = 11

thrice add2 5;;
test

test

test

- cint =11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument was
supplied

9/6/2018 42

Reminder: Pattern Matching with Tuples
let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;
val a : int = 5

(*Patterns can be nested *)

let (p, (st,_),) =d;;
(* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)
val st : string = "bye"
9/6/2018 43

Recursive Functions

let rec factorial n =
if n = 0 then 1
else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
: int = 120

(* rec 1is needed for recursive function
declarations *)

9/6/2018 45

Recursion and Induction

let rec nthsq n =
match n with
© -> 0 (*Base case!*)
| n-> (2 *n-1) + nthsqg (n - 1) ;;

Match Expressions

let triple_to_pair triple =

*Each clause: pattern on

match triple with . .
left, expression on right

(6, x, y) -> (%, ¥)
| (XJ 0, Y) -> (X) y)
| (XJ Y _) -> (X) y)

*Each x, y has scope of
only its clause

*Use first matching clause

val triple_to_pair : int * int * int -> int * int
= <fun>

9/6/2018 44

Recursion Example

Compute n? recursively using:
n2=(2%*n-1)+(n-1)?

let rec nthsq n = (* rec for recursion *)
match n with (* pattern matching for cases *)
0 ->0 (* base case *)
| n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>

nthsq 3;;
cint =9

Structure of recursion similar to inductive proof

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are somehow
smaller - must progress to base case

= if or match must contain the base case (!!!)
= Failure of selecting base case will cause non-termination
= But the program will crash because it exhausts the stack!

9/6/2018 47

9/6/2018 46

Lists

= First example of a recursive datatype (aka
algebraic datatype)

= Unlike tuples, lists are homogeneous in type
(all elements same type)

9/6/2018 48

Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs
= X is head element,

» Xs is tail list, :: called “cons”

= How we typically write them (syntactic sugar):

s [x]==x:[]
s [xl;x2; .5 xn]==xluox2: ... uxnu]]
9/6/2018 49

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

AAN

This expression has type float but is here used
with type int

9/6/2018 51

Functions Over Lists

let rec double_up list =
match list with
[1->[1 (* pattern before ->,
expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

(* fib5 = [8;5;3;2;1;1] *)

let fib5_2 = double_up fib5;;

val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 1; 1]

9/6/2018 53

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;
: bool = true
fib5 @ fib6;;
- : int list =
[8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

9/6/2018 50

Question

= Which one of these lists is invalid?
I. [2;3;4; 6]

2 [23:4567] 3is invalid

because of
3. [(2.3,4); (3.2,5); (6,7.2)] the last pair

4. [[“hi"; “there”]; [“wahcha”]; []; [“doin”]]

9/6/2018 52

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there";
"there"]

let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/6/2018 54

Question: Length of list

= Problem: write code for the length of the list
= How to start?

let length 1 =

9/6/2018 55

Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?
let rec length 1 =
match 1 with

9/6/2018 57

Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?
let rec length 1 =
match 1 with [] -> @
| (a :: bs) ->

9/6/2018 59

Question: Length of list

= Problem: write code for the length of the list
= How to start?
let rec length 1 =
match 1 with

9/6/2018 56

Question: Length of list

s Problem: write code for the length of the list
= What patterns should we match against?
let rec length 1 =
match 1 with [] ->
| (a :: bs) ->

9/6/2018 58

Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?
let rec length 1 =
match 1 with [] -> @
| (a :: bs) ->

9/6/2018 60

10

Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?
let rec length 1 =
match 1 with [] -> @
| (a :: bs) -> 1 + length bs

9/6/2018 61

Same Length

= How can we efficiently answer if two lists have

the same length?
let rec same_length listl list2 =
match listl with
[1->¢(
match list2 with [] -> true
| (y::ys) -> false
)
| (x::xs) -> (
match list2 with [] -> false
| (y::ys) -> same_length xs ys

9/6/2018 63

Iterating over lists

let rec fold_left f a list =
match list with
[1->a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list
-> ‘'a = <fun>

fold_left
(fun () -> print_string)
0]
["hi"; "there"];;
hithere- : unit = ()

9/6/2018 65

Same Length

= How can we efficiently answer if two lists have
the same length?

Tactics:

= First list is empty: then true if second list is empty else false

= First list in not empty: then if second list empty return false,
or otherwise compare whether the sublists (after the
first element) have the same length

9/6/2018 62

Functions Over Lists

let rec map f list =
match list with
[1->11
| (h::t) -> (F h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;
- ¢ int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
¢ int list = [12; 7; 4; 2; 1; 0; 0]

9/6/2018 64

Iterating over lists

let rec fold_right f list b =
match list with
[1->b
| (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
-> 'b = <fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
(OFF

therehi- : unit = ()

9/6/2018 66

11

Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally by
structural recursion

= Recursive calls made to components of structure of
the same recursive type

= Base cases of recursive types stop the recursion of
the function

9/6/2018 67

Forward Recursion

= In Structural Recursion, split input into components
and (eventually) recurse

= Forward Recursion is a form of Structural Recursion

= In forward recursion, first call the function recursively
on all recursive components, and then build final result
from partial results

= Wait until whole structure has been traversed to start
building answer

9/6/2018 69

Encoding Recursion with Fold

let rec append listl list2 = match listl with
[1 ->1list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

- :int list = [1; 2; 3; 4; 5; 6]

let append_alt listl list2 =
fold_right (fun x y -> x :: y) listl list2;;
val append_alt : 'a list -> 'a list -> 'a list = <fun>

9/6/2018 71

Structural Recursion : List Example

let rec length list =
match list with

[T ->0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>

length [5; 4; 3; 21;;
- :int =14

= Nil case [] is base case

= Cons case recurses on component list xs

9/6/2018 68

Forward Recursion: Examples

let rec double_up list =

match list
with [] -> []
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/6/2018 70

Mapping Recursion

m One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with [1 -> []
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;
- : int list = [4; 6; 8]

9/6/2018 72

12

Mapping Recursion

Folding Recursion

instead of direct recursion

= Can use the higher-order recursive map function

= Another common form “folds” an operation
over the elements of the structure

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;
: int list = [4; 6; 8]

= Same function, but no recursion

9/6/2018 73

Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>

multlist [2;4;6];;

- : int = 48
9/6/2018 75
Linear Time

= Expect most list operations to take linear
time O (n)

= Each step of the recursion can be done in
constant time

= Each step makes only one recursive call

m List example: multList, append

= Integer example: factorial

9/6/2018 77

let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multlist [2;4;6];;
: int = 48

= Computes (2% (4 * (6 * 1))

9/6/2018 74

How long will it take?

Common big-O times:
= Constant time O (I)

= input size doesn’t matter
= Linear time O (n)

= 2X input size = 2x time
= Quadratic time O (r?)

= 3x input size = 9x time
= Exponential time O (2”)

= Input size n+| = 2x time

9/6/2018 76

Quadratic Time

m Each step of the recursion takes time
proportional to input

m Each step of the recursion makes only one
recursive call.

m List example:

let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/6/2018 78

13

Exponential running time Exponential running time

let rec naiveFib n = match n
with @ -> @
|1 ->1
| _ -> naiveFib (n-1) + naiveFib (n-2);;

= Hideous running times on input of any size
= Each step of recursion takes constant time
val naiveFib : int -> int = <fun>

m Each recursion makes two recursive calls

= Easy to write naive code that is exponential for

functions that can be linear

9/6/2018 79 9/6/2018 80
An Important Optimization An Important Optimization
= When a function call is made, the = When a function call is made, the
Normal return address needs to be saved Tail return address needs to be saved
call to the stack so we know to call to the stack so we know to where
- where to return when the call is - to return when the call is finished
[finished [= What if fcalls gand gcalls A, but
- = What if fcalls gand gcalls A, but f calling A is the last thing g does (a
i calling A is the last thing g does (a tail call)?
tail call)! = Then 4 can return directly to
instead of g
9/6/2018 81 9/6/2018 82
Tail Recursion Tail Recursion - Example

= A recursive program is tail recursive if all

R K # let rec rev_aux list revlist =
recursive calls are tail calls

match list with [] -> revlist

= Tail recursive programs may be optimized to be | x :: xs -> rev_aux xs (x::revlist);;
implemented as loops, thus removing the val rev_aux : 'a list -> 'a list -> 'a list =
function call overhead for the recursive calls <Fun>
n :I:all recur5|on”generally requires extra # let rev list = rev_aux list [153
accumulator™ arguments to pass partial results val rev : 'a list -> 'a list = <fun>

= May require an auxiliary function = What is its running time?

9/6/2018 83 9/6/2018 84

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with
[1->0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;
cint =9

let rec prodlist list = match list with
[1->1] x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;
-t int = 24
9/6/2018 87

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;
cint =9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;
:int = 24

9/6/2018 89

Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/6/2018 91

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
= <fun>
fold_left f a [X;; Xp5.3%,] = F(.(f (f a X;) X)..)X,

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
= <fun>
fold_right f [Xy5 Xp5.3X%X,] b = F x (f x, (..(f X, b)..))

9/6/2018 88

Folding - Tail Recursion

let rev list =

fold_left
(fun 1 -> fun x -> x :: 1) //comb op
[1] //accumulator cell
list
9/6/2018 90

15

