Programming Languages and Compilers
(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa L Gunter

9/11/2018

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally by

structural recursion
s Recursive calls made to components of structure of
the same recursive type
= Base cases of recursive types stop the recursion of
the function

9/11/2018

Structural Recursion : List Example

let rec length list = match list with
[] -> © (* Nil case *)
| x :: xs -> 1 + length xs;; (* cons case *)
val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;
- ¢ int = 4

= Nil case [] is base case

= Cons case recurses on component list xs

9/11/2018 3

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse on
components

m Forward Recursion form of Structural Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

r Wait until whole structure has been traversed to
start building answer

9/11/2018 4

Forward Recursion: Examples

let rec double up list =
match list with

[1 ->1[1]
| (x :: xs) -> (x :: x :: double up xs);;
val double up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list with

[1 -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>

9/11/2018

Question

= How do you write length with forward
recursion!?

let rec length 1 =

9/11/2018

Question

= How do you write length with forward
recursion!?

let rec length 1 =
match 1 with [] ->
| (a :: bs) ->

9/11/2018

Question

= How do you write length with forward
recursion!?

let rec length 1 =
match 1 with [] ->
| (a :: bs) -> length bs

9/11/2018

Question

= How do you write length with forward
recursion!?

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

9/11/2018

Question

= How do you write length with forward
recursion!?

let rec length 1 =
match 1 with [] -> ©

| (a :: bs) -> let t = length bs
in 1+ t

9/11/2018 10

Functions Over Lists

let rec double up list =
match list
with [] -> [] (* pattern before ->,
expression after *)
| (x :: xs) -> (x :: x :: double up xs);;
val double up : 'a list -> 'a list = <fun>

let fib5 2 = double up fib5;;
val fib5 2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 1; 1]

9/11/2018

Functions Over Lists

let rec poor rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>

poor_rev silly;;
_ : Str‘ing list — [Ilther\ell; llther‘e"; Ilhill; Ilhill]

9/11/2018 12

Your Turn

= Write a function odd count fr : int list -> int such
that it returns the number of odd integers found in
the input list. The function is required to use (only)
forward recursion (no other form of recursion).

let rec odd count fr 1 =

odd count fr [1;2;3];;
- : 1int = 2

9/11/2018 13

An Important Optimization

s When a function call is made, the
return address needs to be saved
to the stack so we know to
where to return when the call is

f finished
g = What if f calls g and g calls h, but
F calling h is the last thing g does
(a tail call)?

s let f x = (g x) +1

= let g x = h (x+1)

= let h x

Normal
call

9/11/2018 14

An Important Optimization

= When a function call is made, the

Tail return address needs to be saved
call to the stack so we know to where
- to return when the call is finished
& = What if f calls g and g calls h, but
f calling h is the last thing g does (a
tail call)?
= Then h can return directly to f

instead of g

9/11/2018 15

Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to be
implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial results

= May require an auxiliary function

9/11/2018 16

Example of Tail Recursion

let rec prod 1 =

match 1 with [] -> 1

| (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>

let prod list =
let rec prod aux 1 acc =
match 1 with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/11/2018 17

Question

= How do you write length with tail recursion?
let length 1 =

9/11/2018

18

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =

in

9/11/2018

19

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] ->
| (a :: bs) ->
in

9/11/2018

20

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) ->
in

9/11/2018

21

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length aux
in

9/11/2018

22

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length aux bs
in

9/11/2018 23

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length _aux bs (n + 1)
in

9/11/2018 24

Question

= How do you write length with tail recursion?
let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length _aux bs (n + 1)
in length aux 1 ©

9/11/2018 25

Your Turn

= Write a function odd count_tr : int list -> int such
that it returns the number of odd integers found in
the input list. The function is required to use (only)
tail recursion (no other form of recursion).

let rec odd count tr 1 =

odd _count tr [1;2;3];;
- : 1int = 2

9/11/2018 26

Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doublelList list = match list with
[1 > 1 1]

| x::xs -> 2 * x :: doubleList xs;;
val doublelList : int list -> int list = <fun>

doublelList [2;3;4];;
- : int list = [4; 6; 8]

9/11/2018 28

Mapping Functions Over Lists

let rec map f list =
match list with
[1 -> []
| (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b)-> 'a list-> 'b list = <fun>

map plus two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
. int list = [12; 7; 4; 2; 1; 0; O]

9/11/2018 29

Mapping Recursion

= Can use the higher-order recursive map function
instead of direct recursion

let doublelList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>

doublelList [2;3;4];;
- ¢ int list = [4; 6; 8]

s Same function, but no rec

9/11/2018 30

Your turn now

Write a function

make app : ((fa -> ‘b) * €a) list -> ‘b list

that takes a list of function — input pairs and gives

the result of applying each function to its
argument. Use map, no explicit recursion.

let make app 1lst =

9/11/2018 31

Folding Recursion

s Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list with
[] ->1
| x::xs -> x * multList xs;;
val multlList : int 1list -> int = <fun>

multList [2;4;6];;
int = 48

= Computes (2 * (4 * (6 *)))

9/11/2018 32

Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
int = 9

match list with

let rec prodlist list

[] -> 1
| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : 1nt = 24

9/11/2018

33

Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with

[1 ->[0]
| x::xs -> umlist xs;;

55L1n1].j.5?t2 I::Z;:3_;z1] > ‘ EBEaE;EB (::ERESEB
int = 9
let rec prodlist list = match list with
[1 ->

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
-+ int = 24

9/11/2018

34

Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with

[1 ->[e]

| x::xs -> x + |sumlist xs|;;
fk\\\\‘

sumlist [2;3;4];; ‘Recursive Call

int = 9
let rec prodlist list/= match list with

[1 ->[1]

| x::xs -> x *[prodlist xs};

prodlist [2;3;4];;
-+ int = 24

9/11/2018

35

Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with

[1 ->[e

| x::xs -> Zl:‘EETEEiE Xsl; ;

sumlist [2;3;4];; |Head Element
int = 9

match list with

let rec prodlist 4ist

[1 >
| x::xs -> [x]*|prodlist xs|;

prodlist [2;3;4];;
- int = 24

9/11/2018

36

Folding Functions over Lists

| How are the following functions similar?
let rec sumlist list = match list with

[1 ->[e

| x::xs ->|x]+ [sumlist xsf;;

sumlist [2;3;4];;
int = 9

let rec prodlist list = match list with

[1 ->[]
| x::xs -> 5_*|Qrodlist XS} ;

prodlist [2;3;4];;
-+ int = 24

9/11/2018

Recursing over lists

let rec fold right f list b =
match list with
[] ->b
| (x :: xs) -> f x (fold right f xs b);;

fold right
(fun val init -> val + init)
[1; 2; 3]
955

- : 1int = 6

9/11/2018

38

Recursing over lists

let rec fold right f list b =
match list with
[] ->b
| (x :: xs) -> f x (fold right f xs b);;

fold right
(fun s -> fun () -> print_string s)
["hi"; "there"]
()55

therehi- : unit = ()

9/11/2018

39

Folding Recursion

= multList folds to the right
s Same as:

let multList 1list =
List.fold right
(fun x -> fun p -> x * p)
list 1;;
val multList : int 1list -> int = <fun>

multList [2;4;6];;
- : int = 48

9/11/2018 40

Encoding Recursion with Fold

let rec append listl 1list2 = match listl with
[] -> 1list2 | x::xs -> x :: append xs list2;;

val appe/J: 'a list -/llst —>Y list = <fun>

| Base Case | |Operation ||Recursive call |

let append list
fold right™(fun x y -> x :: y) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/11/2018 41

Question

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

= How do you write length with fold_right, but no
explicit recursion?

9/11/2018 42

Question

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

= How do you write length with fold_right, but no
explicit recursion?

let length list =

List.fold right (fun x -> fun n -> n + 1)
list ©

9/11/2018 43

Question

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

= How do you write length with fold_right, but no
explicit recursion?

let length list =

List.fold right (fun x -> fun n -> n + 1)
list ©

Can you write fold_right (or fold left) with just
map?! How, or why not!

9/11/2018 v

Iterating over lists

let rec fold left f a list =
match list with
[] -> a
| (x :: xs) -> fold left f (f a x) xs;;
val fold left : ('a -> 'b -> 'a) -> 'a -> 'b list
-> 'a = <fun>

fold left
(fun () -> print_string)
()

[Ilhill; llther‘ell];;
hithere- : unit = ()

9/11/2018 45

Encoding Tail Recursion with fold_|eft

let prod list = let rec prod aux 1 acc =
match 1 with
[] -> acc
| (y :: rest) -> prod _aux rest (acc * y)
in prod _aux list 1;;‘ |

_—

Init Acc Value ‘ Recursive Call ‘ Operation

#

List.fold_left (fun accy -> acc 1 list;;

prod [4;5;6];;
- : int =120

9/11/2018 46

Question

let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length _aux bs (n + 1)
in length aux 1 ©

= How do you write length with fold _left, but no
explicit recursion?

9/11/2018 47

Question

let length 1 =
let rec length aux list n =
match list with [] -> n
| (a :: bs) -> length _aux bs (n + 1)
in length aux 1 ©

= How do you write Tength with fold_Teft, but no
explicit recursion?

let length list =

List.fold left (fun n -> fun x -> n + 1)
O list

9/11/2018 48

Folding

let rec fold left f a list = match list with

[] ->a
| (x :: xs) -> fold left f (f a x) xs;;

fold_left f a [xy; X,5.5%X,] = F(..(f (f a x;) X,)..)X,

let rec fold right £ list b = match list with
[] -> b
| (x :: xs) -> f x (fold right f xs b);;

fold_right f [X;5 X;5..5%,] b = f x,(f x, (..(f x, b)..))

9/11/2018 49

Recall

let rec poor rev list = match list with

[1 -> []
| (x::xs) -> poor _rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>

=| What is its running time!?

9/11/2018 50

Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

m List example:

let rec poor rev list = match list with

[1 -> []
| (x::xs) -> poor rev xs @ [x];;
val poor _rev : 'a list -> 'a list = <fun>

9/11/2018 51

Comparison

= poor _rev [l,2,3] =

= (poor_rev[2,3]) @ [I] =

= ((poor_rev [3]) @ [2]) @ [!] =

= (((poor_rev[) @B @[2) @[] =
= ([J@B)@2) @[!]) =

= (Bl@l2)@[l]=

= Gz ([1@[2]) @[I]=

= [32] @[] =

= 3 (21 @D =

e 3221 @)D =1[3, 2, I]

9/11/2018

52

Tail Recursion

- Example

let rec rev_aux list revlist =
match list with
[] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux :
<fun>

let rev list

a list -> 'a list ->

= rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

= What is its running time!?

9/11/2018

'a list

53

Comparison

mrev [1,2,3] =

m rev_aux [1,2,3][] =

= rev_aux [2,3] [I] =

m rev_aux [3] [2,1] =

s rev_aux|[][3,2,1] =1[3,2,1]

9/11/2018 54

Folding - Tail Recursion

let rec rev_aux list revlist =

match list with
[] -> revlist
| x :: xXs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

let rev list =

fold_left
(fun 1 -> fun x -> x :: 1) (* comb op *)
[] (* accumulator cell *)

list

9/11/2018 55

Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any
tail primitive recursive definition

9/11/2018 56

Example of Tail Recursion

let rec app fl x =
match f1 with [] -> x
| (f :: rem _fs) ->
val app : ('a -> 'a) list ->

(app rem_fs x);;‘
a -> 'a = <fun>

let app fs x =
let rec app aux fl acc =

match f1 with [] -> acc
| (f :: rem_fs) -> app_aux

(fun z -> acc (f z))

in app aux fs (funy ->vy) X;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

9/11/2018 57

Continuation Passing Style

= A programming technique for all forms of
“non-local” control flow:

= non-local jumps

m exceptions

= general conversion of non-tail calls to tail calls

= Essentially it’ s a higher-order function
version of GOTO

9/11/2018 58

Continuations

= Idea: Use functions to represent the control flow
of a program

m Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns’ no result

m Function receiving the result called a
continuation

s Continuation acts as accumulator_ for work
still to be done

9/11/2018 59

Continuation Passing Style

= Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

9/11/2018

60

Example

‘- Simple reporting continuation: ‘

let report x = (print_int x;
print _newline());;

val report : int -> unit = <fun>
‘- Simple function using a continuation: ‘

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> "a) -> "a
= <fun>

plusk 20 22 report;;

42

: unit = ()

9_/11/2018 61

Example of Tail Recursion & CSP

let app fs x =
let rec app aux fl acc=
match f1 with

[] -> acc
| (f :: rem fs) -> app_aux rem_fs
(fun z -> acc (f z))
in app _aux fs (funy ->vy) X;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =
match f1 with
[] -> k X
| (f :: rem _fs) -> appk rem fs x (fun z -> k (f z));.
hval appk : ('a -> 'a) 1list -> 'a -> ('a -> 'b) -> 'b

9/11/2018 62

Example of Tail Recursion & CSP

let rec appk fl x k =
match f1 with
[] -> k X
| (f :: rem_fs) -> appk rem fs x (fun z -> k (f 2));.

appk [(fun x->x+1); (fun x -> x*5)] 2 (fun x->X);;
- ¢ int = 11

9/11/2018 63

Continuation Passing Style

= A compilation technique to implement non-local
control flow, especially useful in interpreters.

s A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/11/2018 64

Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (e.g. tail recursion)

= A function is in Continuation Passing Style
when it passes its result to another function.

= Instead of returning the result to the caller, we pass
it forward to another function.

9/11/2018 65

Continuation Passing Style

= A compilation technique to implement non-local
control flow, especially useful in interpreters.

s A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/11/2018 66

Example

‘- Simple reporting continuation: ‘

let report x = (print_int x;
print _newline());;

val report : int -> unit = <fun>
‘- Simple function using a continuation: ‘

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> "a) -> "a
= <fun>

plusk 20 22 report;;

42

: unit = ()

9_/11/2018 67

Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

s Examples:

let subk x y k = k(x + vy);;

val subk : int -> int -> (int -> 'a) -> 'a = <funm>

let eqgk x y k = k(x =vy);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a =
<fun>

9/11/2018 68

Nesting Continuations

let add three xy z = x +y + z;;
val add _three : int -> int -> int -> int = <fun>

let add three xy z =let p=x+y 1in p + z;;
val add _three : int -> int -> int -> int = <fun>

let add three k x y z k =
addk x vy kfun p -> addk p z E])k;
val add _three k : int -> int -> int -> (int -> 'c

-> 'a = <fun>

9/11/2018 69

