
10/25/2018 1

Programming Languages and Compilers 

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier 

slides by Mattox Beckman, Vikram Adve, and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2017/CS421A


10/25/2018 2

Course Objectives

 New programming paradigm
 Functional programming

 Environments and Closures

 Patterns of Recursion

 Continuation Passing Style

 Phases of an interpreter / compiler
 Lexing and parsing

 Type systems

 Interpretation

 Programming Language Semantics
 Lambda Calculus

 Operational Semantics

 Axiomatic Semantics



Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis
Environment

Translate
Intermediate

Representation

(CPS)

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction

Selection

Optimized Machine-Specific

Assembly Language

Instruction 

Optimize

Unoptimized Machine-Specific 

Assembly Language

Emit code

Assembler

Relocatable

Object Code

Assembly Language

Linker

Machine

Code

Analyze 

+ Transform
Optimized IR (CPS)



Major Phases of a PicoML Interpreter

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis
Environment

Translate
Intermediate

Representation

(CPS)

Interpreter 

Execution

Program Run

Analyze 

+ Transform
Optimized IR (CPS)



10/25/2018 6

Meta-discourse

Language Syntax and Semantics

 Syntax

- Regular Expressions, DFSAs and NDFSAs

- Grammars   

 Semantics

- Natural Semantics

- Transition Semantics



10/25/2018 7

Where We Are Going Next?

 We want to turn strings (code) into computer 

instructions

 Done in phases

 Break the big strings into tokens (lex)

 Turn tokens into abstract syntax trees (parse)

 Translate abstract syntax trees into executable 

instructions (interpret or compile)



10/25/2018 8

Syntax of English Language

 Pattern 1

 Pattern 2



10/25/2018 9

Elements of Syntax

 Character set – previously always ASCII, now 

often 64 character sets

 Keywords – usually reserved

 Special constants – cannot be assigned to

 Identifiers – can be assigned to

 Operator symbols

 Delimiters (parenthesis, braces, brackets)

 Blanks (aka white space)



10/25/2018 10

Elements of Syntax

 Expressions

if ... then begin ... ; ... end else begin ... ; ... end

 Type expressions
typexpr1 -> typexpr2

 Declarations (in functional languages)
let pattern = expr

 Statements (in imperative languages)
a = b + c  

 Subprograms

let pattern1 = expr1 in expr



10/25/2018 11

Elements of Syntax

 Modules

 Interfaces

 Classes (for object-oriented languages)



10/25/2018 12

Lexing and Parsing

 Converting strings to abstract syntax trees done 

in two phases

 Lexing: Converting string (or streams of 

characters) into lists (or streams) of tokens 

(the “words” of the language)

 Specification Technique: Regular Expressions

 Parsing: Convert a list of tokens into an 

abstract syntax tree

 Specification Technique: BNF Grammars



10/25/2018 13

Formal Language Descriptions

 Regular expressions, regular grammars, finite 

state automata

 Context-free grammars, BNF grammars, syntax 

diagrams

 Whole family more of grammars and automata –

covered in automata theory



10/25/2018 14

Grammars

 Grammars are formal descriptions of which 

strings over a given character set are in a 

particular language

 Language designers write grammar

 Language implementers use grammar to know 

what programs to accept

 Language users use grammar to know how to 

write legitimate programs



10/25/2018 15

Regular Expressions - Review

 Start with a given character set – a, b, c…

 Each character is a regular expression

 It represents the set of one string containing 

just that character



10/25/2018 16

Regular Expressions

 If x and y are regular expressions, then xy is a 
regular expression

 It represents the set of all strings made from first a 
string described by x then a string described by y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.

 If x and y are regular expressions, then xy is a 
regular expression

 It represents the set of strings described by either x
or y

If x={a,ab} and y={c,d} then x  y={a,ab,c,d}



10/25/2018 17

Regular Expressions

 If x is a regular expression, then so is (x)
 It represents the same thing as x

 If x is a regular expression, then so is x*
 It represents strings made from concatenating zero or 

more strings from x

If x = {a,ab} then x* ={“”,a,ab,aa,aab,abab,…}

 
 It represents {“”}, set containing the empty string

 Φ
 It represents { }, the empty set



10/25/2018 18

Example Regular Expressions

 (01)*1
 The set of all strings of 0’s and 1’s ending in 1,   

 {1, 01, 11,…}

 a*b(a*)
 The set of all strings of a’s and b’s with exactly one b

 ((01) (10))*
 You tell me

 Regular expressions (equivalently, regular 
grammars) important for lexing, breaking strings 
into recognized words



10/25/2018 19

Example: Lexing

 Regular expressions good for describing lexemes 

(words) in a programming language

 Identifier = (a  b  …  z  A  B  …  Z) (a  b 

 …  z  A  B  …  Z  0  1  …  9)*

 Digit = (0  1  …  9)

 Number = 0  (1  …  9)(0  …  9)* 

- (1  …  9)(0  …  9)*

 Keywords: if = if, while = while,…



10/25/2018 20

Implementing Regular Expressions

 Regular expressions reasonable way to 
generate strings in language

 Not so good for recognizing when a string 
is in language

 Problems with Regular Expressions

 which option to choose,

 how many repetitions to make

 Answer: finite state automata

 Should have seen in CS374



10/25/2018 21

Lexing

 Different syntactic categories of “words”: 
tokens

Example:

 Convert sequence of characters into sequence 
of strings, integers, and floating point numbers.

 "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float 3.14]



10/25/2018 22

Lex, ocamllex

 Could write the reg exp, then translate to DFA 

by hand

 A lot of work

 Better: Write program to take reg exp as input 

and automatically generates automata 

 Lex is such a program

 ocamllex version for ocaml



10/25/2018 23

How to do it

 To use regular expressions to parse 

our input we need:

 Some way to identify the input string —

call it a lexing buffer 

 Set of regular expressions,

 Corresponding set of actions to take 

when they are matched.



10/25/2018 24

How to do it

 The lexer will take the regular expressions and 

generate a state

machine. 

 The state machine will take our lexing buffer and 

apply the transitions... 

 If we reach an accepting state from which we can 

go no further, the machine will perform the 

appropriate action.



10/25/2018 25

Mechanics

 Put table of reg exp and corresponding actions 

(written in ocaml) into a file <filename>.mll

 Call

ocamllex <filename>.mll

 Produces Ocaml code for a lexical analyzer in file 

<filename>.ml



10/25/2018 26

Sample Input

rule main = parse

['0'-'9']+ { print_string "Int\n"}

| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}

| ['a'-'z']+ { print_string "String\n"}

| _ { main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in

print_string "Ready to lex.\n";

main newlexbuf

} 



10/25/2018 27

General Input

{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse    

regexp { action } 

| ... 

| regexp { action }

and entrypoint [arg1... argn] =  parse 

...and ...

{ trailer }



10/25/2018 28

Ocamllex Input

 header and trailer contain arbitrary ocaml 
code put at top an bottom of 
<filename>.ml

 let ident = regexp ...  Introduces ident for 
use in later regular expressions



10/25/2018 29

Ocamllex Input

 <filename>.ml contains one lexing function 
per entrypoint
 Name of function is name given for entrypoint

 Each entry point becomes an Ocaml function 
that takes n +1 arguments, the extra implicit 
last argument being of type Lexing.lexbuf

 arg1... argn are for use in action



10/25/2018 30

Ocamllex Regular Expression

 Single quoted characters for letters: ‘a’

 _: (underscore) matches any letter

 Eof: special “end_of_file” marker

 Concatenation same as usual

 “string”: concatenation of sequence of 
characters

 e1 | e2 : choice - what was e1  e2



10/25/2018 31

Ocamllex Regular Expression

 [c1 - c2]: choice of any character between 
first and second inclusive, as determined by 
character codes

 [^c1 - c2]: choice of any character NOT in 
set

 e*: same as before

 e+: same as e e*

 e?: option - was e1  



10/25/2018 32

Ocamllex Regular Expression

 e1 # e2: the characters in e1 but not in e2; e1

and e2 must describe just sets of characters

 ident: abbreviation for earlier reg exp in let 

ident = regexp

 e1 as id: binds the result of e1 to id to be 

used in the associated action



10/25/2018 33

Ocamllex Manual

 More details can be found at

http://caml.inria.fr/pub/docs/manual-

ocaml/lexyacc.html

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html


10/25/2018 34

Example : test.mll

{ 

type result = Int of int | Float of float |    
String of string 

}

let digit = ['0'-'9']

let digits = digit+

let lower_case = ['a'-'z']

let upper_case = ['A'-'Z']

let letter = upper_case | lower_case

let letters = letter+



35

Example : test.mll

rule main = parse

(digits)'.'digits as f  

{ Float (float_of_string f) }

| digits as n   { Int (int_of_string n) }

| letters as s  { String s}

| _             { main lexbuf }

{ 

let newlexbuf = (Lexing.from_channel stdin) in

print_string "Ready to lex.";

print_newline ();

main newlexbuf

}



10/25/2018 36

Example

# #use "test.ml";;

…

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf -> 
int -> result = <fun>

Ready to lex.

hi there 234 5.2

- : result = String "hi"

What happened to the rest?!?



10/25/2018 37

Example

# let b = Lexing.from_channel stdin;;

# main b;;

hi 673 there

- : result = String "hi"

# main b;;

- : result = Int 673

# main b;;

- : result = String "there"



10/25/2018 39

Problem

 How to get lexer to look at more than the first 

token at one time?

 Answer: action has to tell it to -- recursive calls

 Side Benefit: can add “state” into lexing

 Note: already used this with the _ case



10/25/2018 40

Example

rule main = parse

(digits) '.' digits as f 

{ Float (float_of_string f) :: main lexbuf}

| digits as n          

{ Int (int_of_string n) :: main lexbuf }

| letters as s         

{ String s :: main lexbuf}

| eof  { [] }

| _    { main lexbuf }



10/25/2018 41

Example Results

Ready to lex.

hi there 234 5.2

- : result list = [String "hi"; String "there";   
Int 234; Float 5.2]

# 

Used Ctrl-d to send the end-of-file signal



10/25/2018 42

Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)“

rule main = parse
(digits) '.' digits as f 
{ Float (float_of_string f) :: main lexbuf}

| digits as n          
{ Int (int_of_string n) :: main lexbuf }

| letters as s         
{ String s :: main lexbuf}



10/25/2018 43

Dealing with comments

(* Continued from rule main *)

| open_comment { comment  lexbuf}

| eof                 { [] }

| _ { main lexbuf }

and comment = parse

close_comment { main lexbuf }

| _                   { comment lexbuf }



44

Dealing with nested comments

rule main = parse …
| open_comment   { comment 1 lexbuf}
| eof            { [] }
| _ { main lexbuf }

and comment depth = parse
open_comment   { comment (depth+1) lexbuf }

| close_comment  { if depth = 1
then main lexbuf
else comment (depth - 1) 

lexbuf 
}

| _              { comment depth lexbuf }



10/25/2018 45

Types of Formal Language Descriptions

 Regular expressions, regular grammars

 Context-free grammars, BNF grammars, syntax  

diagrams

 Finite state automata

 Pushdown automata

 Whole family more of grammars and automata –

covered in automata theory



10/25/2018 46

BNF Grammars

 Start with a set of characters, a,b,c,…

 We call these terminals

 Add a set of different characters, X,Y,Z,…

 We call these nonterminals

 One special nonterminal S called start
symbol



10/25/2018 47

BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string of 

terminals and nonterminals

 BNF grammar is a set of BNF rules such that 

every nonterminal appears on the left of some 

rule



10/25/2018 48

Example: Regular Grammars

 Regular grammar: 

<Balanced> ::= 

<Balanced> ::=  0<OneAndMore>

<Balanced> ::= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>

<ZeroAndMore> ::= 0<Balanced>

 Generates even length strings where every initial 
substring of even length has same number of 0’s 
as 1’s



49

Example of BNF: Regular Grammars

 Subclass of BNF -- has only rules of the form:

<nonterminal>::=<terminal><nonterminal> or      
<nonterminal>::=<terminal> or 
<nonterminal>::=ε

 Defines same class of languages as regular expressions

 Important for writing lexers (programs that convert strings 
of characters into strings of tokens)

 Close connection to nondeterministic finite state automata

 nonterminals = states; 

 rule = edge



10/25/2018 50

BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string of 

terminals and nonterminals

 BNF grammar is a set of BNF rules such that 

every nonterminal appears on the left of some 

rule



10/25/2018 51

Sample BNF Grammar

 Language: Parenthesized sums of 0’s and 1’s

 <Sum> ::= 0 

 <Sum >::= 1 

 <Sum> ::= <Sum> + <Sum>

 <Sum> ::= (<Sum>)



10/25/2018 52

Sample Grammar

 Terminals: 0 1 + ( )
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0 
 <Sum >::= 1 
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
<Sum> ::= 0 | 1 

| <Sum> + <Sum> | (<Sum>)



10/25/2018 53

BNF Deriviations

 Given rules 

X::= yZw and Z::=v

we may replace Z by v to say

X => yZw => yvw 

 Sequence of such replacements called 
derivation

 Derivation called right-most if always 
replace the right-most non-terminal



10/25/2018 54

BNF Derivations

 Start with the start symbol:

<Sum> =>



10/25/2018 55

BNF Derivations

 Pick a non-terminal

<Sum> =>



10/25/2018 56

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations



10/25/2018 57

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations



10/25/2018 58

 Pick a rule and substitute:

 <Sum> ::= ( <Sum> )

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

BNF Derivations



10/25/2018 59

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

BNF Derivations



10/25/2018 60

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations



10/25/2018 61

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations



10/25/2018 62

 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

BNF Derivations



10/25/2018 63

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

BNF Derivations



10/25/2018 64

 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

BNF Derivations



10/25/2018 65

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

BNF Derivations



10/25/2018 66

 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) 0

=> ( 0 + 1 ) + 0

BNF Derivations



10/25/2018 67

 ( 0 + 1 ) + 0  is generated by grammar

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

=> ( 0 + 1 ) + 0

BNF Derivations



10/25/2018 68

 Graphical representation of derivation

 Each node labeled with either non-terminal or 

terminal

 If node is labeled with a terminal, then it is a leaf (no 

sub-trees)

 If node is labeled with a non-terminal, then it has one 

branch for each character in the right-hand side of 

rule used to substitute for it

Parse Trees



10/25/2018 69

Example

 Consider grammar:

<exp> ::= <factor>

|  <factor> +  <factor>

<factor>  ::=  <bin> 

|   <bin>  *  <exp>

<bin>      ::=  0  | 1

 Goal: Build parse tree for 1 * 1 + 0 as an <exp>



10/25/2018 70

Example cont.

 1 * 1 + 0:    <exp>

<exp> is the start symbol for this parse tree



10/25/2018 71

Example cont.

 1 * 1 + 0:    <exp>

<factor>

Use rule: <exp> ::=  <factor>



10/25/2018 72

Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

Use rule:  <factor> ::=  <bin> *  <exp>



10/25/2018 73

Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *            <exp>

|              <factor> +    <factor>

Use rules:  <bin> ::= 1   and

<exp> ::= <factor>  + <factor>



10/25/2018 74

Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *            <exp>

1 <factor> +    <factor>

<bin>            <bin>

Use rule:  <factor> ::= <bin>



10/25/2018 75

Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *            <exp>

1 <factor> +    <factor>

<bin>            <bin>

1                   0

Use rules:  <bin> ::= 1 | 0



10/25/2018 76

Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *            <exp>

1 <factor> +    <factor>

<bin>            <bin>

1                   0

Use rules:  <bin> ::= 1 | 0


