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Axiomatic Semantics

 Also called Floyd-Hoare Logic

 Based on formal logic (first order 
predicate calculus)

 Axiomatic Semantics is a logical system 
built from axioms and inference rules

 Mainly suited to simple imperative 
programming languages



12/4/2018 3

Axiomatic Semantics

 Used to formally prove a property (post-

condition) of the state (the values of the 

program variables) after the execution 

of program, assuming another property 

(pre-condition) of the state holds before 

execution
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Axiomatic Semantics

 Goal: Derive statements of form

{P} C {Q}
 P , Q logical statements about state, 

P precondition, 

Q postcondition,       

C program

 Example:  {x > 1} x := x + 1 {x > 2}
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Axiomatic Semantics

 Approach: For each kind of language 

statement, give an axiom or inference rule 

stating how to derive assertions of form 

{P} C {Q} 

where C is a statement of that kind

 Compose axioms and inference rules to build 

proofs for complex programs
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Axiomatic Semantics

 An expression {P} C {Q} is a partial 

correctness statement

 For total correctness must also prove 

that C terminates (i.e. doesn’t run 

forever)

 Written:  [P] C [Q]

 Will only consider partial correctness 

here
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Language

 We will give rules for simple imperative 
language

<command> ::= 
<variable> := <term>

|  <command>; … ;<command>
|  if <expression> then <command> 

else <command> fi
| while <expression> do <command> od

 Could add more features, like for-loops
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Substitution

 Notation:   P[e/v]  (sometimes P[v <- e])

 Meaning:   Replace every v in P by e

 Example: 

(x + 2) [y-1/x] = ((y – 1) + 2)
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The Assignment Rule

{P [e/x] } x := e {P}

Example:

{    ?    } x := y {x = 2}
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The Assignment Rule

{P [e/x] } x := e {P}

Example:

{ _ = 2 } x := y { x = 2}
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The Assignment Rule

{P [e/x] } x := e {P}

Example:

{ y = 2 } x := y { x = 2}
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1  {x = n + 1}

{2 = 2} x := 2 {x = 2}
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The Assignment Rule – Your Turn

 What is a valid precondition of

x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}

x := x + y

{x + y = w – x}

?
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The Assignment Rule – Your Turn

 What is a valid precondition of

x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}

x := x + y

{x + y = w – x}
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Precondition Strengthening

P  P’ {P’} C {Q}

{P} C {Q}

 Meaning: If we can show that P

implies P’ (P P’) and we can show 

that {P’} C {Q}, then we know that 

{P} C {Q}

 P is stronger than P’ means P  P’
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Precondition Strengthening

 Examples:
x = 3  x < 7  {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True  2 = 2   {2 = 2} x:= 2 {x = 2}
{True}  x:= 2 {x = 2}

x=n  x+1=n+1    {x+1=n+1} x:=x+1 {x=n+1}
{x=n} x:=x+1 {x=n+1}
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Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}
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Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}
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Sequencing

{P} C1 {Q}     {Q} C2 {R}

{P} C1; C2 {R}

 Example:

{z = z & z = z} x := z {x = z & z = z}

{x = z & z = z} y := z {x = z & y = z}
{z = z & z = z} x := z; y := z {x = z & y = z}
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Sequencing

{P} C1 {Q}     {Q} C2 {R}

{P} C1; C2 {R}

 Example:

{z = z & z = z} x := z {x = z & z = z}

{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}
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Postcondition Weakening

{P} C {Q’}    Q’ Q

{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)  (x = y)

{z = z & z = z} x := z; y := z {x = y}
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Rule of Consequence

P  P’ {P’} C {Q’}    Q’ Q

{P} C {Q}

 Logically equivalent to the combination of 

Precondition Strengthening and 

Postcondition Weakening

 Uses P  P’ and  Q’  Q
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}

{P} if B then C1 else C2 fi {Q}

 Example:  Want

{y=a}

if x < 0 then y:= y-x else y:= y+x fi

{y=a+|x|}
Suffices to show:

(1) {y=a&x<0}  y:=y-x  {y=a+|x|}  and      

(4) {y=a&not(x<0)}  y:=y+x  {y=a+|x|}
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(3)        (y=a & x<0) y-x=a+|x|

(2)      {y-x=a+|x|}  y:=y-x   {y=a+|x|}

(1)      {y=a & x<0}  y:=y-x  {y=a+|x|}

(1) Reduces to (2) and (3) by Precondition 

Strengthening

(2) Follows from assignment axiom

(3) Because from algebra: x<0  |x| = -x

{y=a & x<0}  y:=y-x  {y=a+|x|}
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(6)     (y=a & not(x<0))(y+x=a+|x|)

(5) {y+x=a+|x|} y:=y+x   {y=a+|x}}

(4)   {y=a & not(x<0)} y:=y+x  {y=a+|x|}

(4) Reduces to (5) and (6) by Precondition 

Strengthening

(5) Follows from assignment axiom

(6) Because not(x<0)  |x| = x

{y=a & not(x<0)} y:=y+x {y=a+|x|}



12/4/2018 26

If Then Else

(1)          {y=a & x<0} y:=y-x {y=a+|x|} .

(4)      {y=a & not(x<0)} y:=y+x {y=a+|x|} .

{y=a}

if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the IfThenElse rule
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While

 We need a rule to be able to make 

assertions about while loops.

 Inference rule because we can only draw 

conclusions if we know something about 

the body

 Let’s start with:

{     ?     }     C    {      ?     }

{      ?      }   while   B  do C od {  P  }
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While

 The loop may never be executed, so if 

we want P to hold after, it had better 

hold before, so let’s try:

{     ?     }     C    {      ?     }

{  P  }  while   B  do C od {  P  }
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While

 If all we know is  P when we enter the 

while loop, then we all we know when 

we enter the body is   (P and  B)

 If we need to know   P when we finish 

the while loop, we had better know it 

when we finish the loop body:

{ P and B}  C  { P }

{ P }  while B  do C od { P }
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While

 We can strengthen the previous rule 

because we also know that when the 

loop is finished,  not B also holds

 Final while rule:

{ P and B }  C  { P }

{ P } while  B  do C od { P and not B }
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While

{ P and B }  C  { P }

{ P } while  B  do C od { P and not B }

 P satisfying this rule is called a 

loop invariant because it must 

hold before and after each 

iteration of the loop
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While

 While rule generally needs to be used 

together with precondition strengthening 

and postcondition weakening

 There is NO algorithm for computing 

the correct P; it requires intuition and 

an understanding of why the program 

works



Counting up to n

x := 0;

while (x < n) {

x := x + 1

}

Want to show: x >= n && n >= 0
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P ≡ x ≤ n ∧ 0 ≤ n 



Sum of numbers 1 to n

x := 0 

y := 0

while y < n {

y := y + 1;

x := x + y

}

Want to show: x = 1 + ... + n

P ≡      x = 1 + ... + y 

∧ y ≤ n 

∧ 0 ≤ n



Fibonacci

x = 0; y = 1;  

z = 1; 

while (z < n) {

y := x + y;

x := y – x;

z := z + 1

}

Want to show: y = fib n

P ≡      y = fib z 

∧ x = fib (z-1)

∧ z ≤ n

∧ 1 ≤ n



List Length

x = lst; y = 0

while (x ≠ []) {

x := tl x;

y := y + 1

}

Want to show: y = len lst

P ≡ y + len x = len lst 
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Example (Use of Loop Invariant in Full Proof)

 Let us prove 
{x>= 0 and x = a}

fact := 1;

while x > 0 do (fact := fact * x; x := x – 1) od

{fact = a!}
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Example

 We need to find a condition P that is true 

both before and after the loop is executed, 

and such that

(P and not x > 0) => (fact = a!)
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Example

 First attempt:

P = {a! = fact * (x!)}

 Motivation:

 What we want to compute:  a!

 What we have computed: fact 

which is the sequential product of  a down 

through (x + 1)

 What we still need to compute:  x!
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Example

By post-condition weakening suffices to show

1. {x>=0 and x = a} 
fact := 1;

while x > 0 do (fact := fact * x; x := x –1) od

{a! = fact * (x!) and not (x > 0)}

And

2. a! = fact * (x!) and not (x > 0)  => fact = a!



12/4/2018 41

Problem!! (Dead End)

2.  a! = fact * (x!) and not (x > 0) => fact = a!

 Don’t know this if x < 0 !!
 Need to know that x = 0 when loop terminates

 Need a new loop invariant

 Try adding x >= 0

 Then will have x = 0 when loop is done



Second try, let us combine the two:
P  a! = fact * (x!) and x >=0

We need to show:

1. {x>=0 and x = a} 

fact := 1;

{P}

while x > 0 do (fact := fact * x; x := x –1) od

{P and not x > 0}

And

2. P and not x > 0  fact = a!
42

Example
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Example

 For Part 1, by sequencing rule it suffices to show

3.     {x>=0 and x = a} 
fact := 1

{a! = fact * (x!) and x >=0 }

And

4.      {a! = fact * (x!) and x >=0}
while x > 0 do 
(fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >=0 and not (x > 0)}

{x>= 0 and x = a} (*this was part 1 to prove*)

fact := 1;

while x > 0 do (fact := fact * x; x := x –1) od  

{a! = fact * (x!) and x >=0 and not (x>0)}
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Example

 (Part 3 – Assignment) Suffices to show that

a! = fact * (x!) and x >= 0 

holds before the while loop is entered

 (Part 4 – While Loop) And that if

(a! = fact * (x!)) and x >= 0 and x > 0

holds before we execute the body of the loop, then

(a! = fact * (x!)) and x >= 0

holds after we execute the body (part 4)
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Example

(Part 3) By the assignment rule, we have
{a! = 1 * (x!) and x >= 0}

fact := 1
{a! = fact * (x!) and x >= 0}

Therefore, to show (3), by precondition 
strengthening, it suffices to show

(x>= 0 and x = a)  (a! = 1 * (x!) and x >= 0)

It holds because x = a  x! = a! . 

 So, we have that a! = fact * (x!) and x >= 0 

holds at the start of the while loop!
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Example

To prove (Part 4): 

{a! = fact * (x!) and x >=0}
while x > 0 do 

(fact := fact * x; x := x –1)
od

{a! = fact * (x!) and x >=0 and not (x > 0)}

we need to show that (a! = fact * (x!)) and x >= 0

is a loop invariant

 We will use assignment rule, sequencing rule and 

precondition strengthening rule
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Example  

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{Q}

 By the assignment rule, show

{Q}

x := x – 1

{(a! = fact * (x!)) and x >= 0}
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Example  

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{Q}

 From the assignment rule, we know:

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1

{(a! = fact * (x!)) and x >= 0}
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Example  

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

 From the assignment rule, we know:

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1

{(a! = fact * (x!)) and x >= 0}
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Example

 By the assignment rule, we have that

{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}
fact = fact * x

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

 By Precondition strengthening, it suffices to show that 

((a! = fact * (x!)) and x >= 0 and x > 0) 

((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0)

From algebra we know that  fact * x * (x – 1)! = fact * x!

and  (x > 0)  x – 1 >= 0 since x is an integer, so

{(a! = fact * (x!)) and x >= 0 and x > 0} 

{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}



Second try, let us combine the two:
P  a! = fact * (x!) and x >=0

We need to show:

1. {x>=0 and x = a} 

fact := 1;

{P}

while x > 0 do (fact := fact * x; x := x –1) od

{P and not x > 0}

And

2. P and not x > 0  fact = a!
51

Example





12/4/2018 52

Example

 For Part 2, we need

(a! = fact * (x!) and x >=0 and not (x > 0))  (fact = a!)

Since we know (x >=0 and not (x > 0))  (x = 0) so 

fact * (x!) = fact * (0!) 

And since from algebra we know that 0! = 1,  

fact * (0)! = fact * 1 = fact

 Therefore, we can prove: 

(a! = fact * (x!) and x >=0 and not (x > 0))  (fact = a!)
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Example

 We proved that (a! = fact * (x!)) and x >= 0 is the loop 

invariant

 We proved the sequence rule for the assignment and wile 

statements

 We applied postcondition weakening to prove the final 

predicate

This finishes the proof! 
{x >= 0 and x = a}

fact := 1;

while x > 0 do (fact := fact * x; x := x – 1) od  

{fact = a!}




