
12/4/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa L Gunter

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

12/4/2018 2

Axiomatic Semantics

 Also called Floyd-Hoare Logic

 Based on formal logic (first order
predicate calculus)

 Axiomatic Semantics is a logical system
built from axioms and inference rules

 Mainly suited to simple imperative
programming languages

12/4/2018 3

Axiomatic Semantics

 Used to formally prove a property (post-

condition) of the state (the values of the

program variables) after the execution

of program, assuming another property

(pre-condition) of the state holds before

execution

12/4/2018 4

Axiomatic Semantics

 Goal: Derive statements of form

{P} C {Q}
 P , Q logical statements about state,

P precondition,

Q postcondition,

C program

 Example: {x > 1} x := x + 1 {x > 2}

12/4/2018 5

Axiomatic Semantics

 Approach: For each kind of language

statement, give an axiom or inference rule

stating how to derive assertions of form

{P} C {Q}

where C is a statement of that kind

 Compose axioms and inference rules to build

proofs for complex programs

12/4/2018 6

Axiomatic Semantics

 An expression {P} C {Q} is a partial

correctness statement

 For total correctness must also prove

that C terminates (i.e. doesn’t run

forever)

 Written: [P] C [Q]

 Will only consider partial correctness

here

12/4/2018 7

Language

 We will give rules for simple imperative
language

<command> ::=
<variable> := <term>

| <command>; … ;<command>
| if <expression> then <command>

else <command> fi
| while <expression> do <command> od

 Could add more features, like for-loops

12/4/2018 8

Substitution

 Notation: P[e/v] (sometimes P[v <- e])

 Meaning: Replace every v in P by e

 Example:

(x + 2) [y-1/x] = ((y – 1) + 2)

12/4/2018 9

The Assignment Rule

{P [e/x] } x := e {P}

Example:

{ ? } x := y {x = 2}

12/4/2018 10

The Assignment Rule

{P [e/x] } x := e {P}

Example:

{ _ = 2 } x := y { x = 2}

12/4/2018 11

The Assignment Rule

{P [e/x] } x := e {P}

Example:

{ y = 2 } x := y { x = 2}

12/4/2018 12

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1 {x = n + 1}

{2 = 2} x := 2 {x = 2}

12/4/2018 13

The Assignment Rule – Your Turn

 What is a valid precondition of

x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}

x := x + y

{x + y = w – x}

?

12/4/2018 14

The Assignment Rule – Your Turn

 What is a valid precondition of

x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}

x := x + y

{x + y = w – x}

12/4/2018 15

Precondition Strengthening

P  P’ {P’} C {Q}

{P} C {Q}

 Meaning: If we can show that P

implies P’ (P P’) and we can show

that {P’} C {Q}, then we know that

{P} C {Q}

 P is stronger than P’ means P  P’

12/4/2018 16

Precondition Strengthening

 Examples:
x = 3  x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True  2 = 2 {2 = 2} x:= 2 {x = 2}
{True} x:= 2 {x = 2}

x=n  x+1=n+1 {x+1=n+1} x:=x+1 {x=n+1}
{x=n} x:=x+1 {x=n+1}

12/4/2018 17

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

12/4/2018 18

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}

{x > 0 & x < 5} x := x * x {x < 25}

12/4/2018 19

Sequencing

{P} C1 {Q} {Q} C2 {R}

{P} C1; C2 {R}

 Example:

{z = z & z = z} x := z {x = z & z = z}

{x = z & z = z} y := z {x = z & y = z}
{z = z & z = z} x := z; y := z {x = z & y = z}

12/4/2018 20

Sequencing

{P} C1 {Q} {Q} C2 {R}

{P} C1; C2 {R}

 Example:

{z = z & z = z} x := z {x = z & z = z}

{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

12/4/2018 21

Postcondition Weakening

{P} C {Q’} Q’ Q

{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)  (x = y)

{z = z & z = z} x := z; y := z {x = y}

12/4/2018 22

Rule of Consequence

P  P’ {P’} C {Q’} Q’ Q

{P} C {Q}

 Logically equivalent to the combination of

Precondition Strengthening and

Postcondition Weakening

 Uses P  P’ and Q’  Q

12/4/2018 23

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}

{P} if B then C1 else C2 fi {Q}

 Example: Want

{y=a}

if x < 0 then y:= y-x else y:= y+x fi

{y=a+|x|}
Suffices to show:

(1) {y=a&x<0} y:=y-x {y=a+|x|} and

(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

12/4/2018 24

(3) (y=a & x<0) y-x=a+|x|

(2) {y-x=a+|x|} y:=y-x {y=a+|x|}

(1) {y=a & x<0} y:=y-x {y=a+|x|}

(1) Reduces to (2) and (3) by Precondition

Strengthening

(2) Follows from assignment axiom

(3) Because from algebra: x<0  |x| = -x

{y=a & x<0} y:=y-x {y=a+|x|}

12/4/2018 25

(6) (y=a & not(x<0))(y+x=a+|x|)

(5) {y+x=a+|x|} y:=y+x {y=a+|x}}

(4) {y=a & not(x<0)} y:=y+x {y=a+|x|}

(4) Reduces to (5) and (6) by Precondition

Strengthening

(5) Follows from assignment axiom

(6) Because not(x<0)  |x| = x

{y=a & not(x<0)} y:=y+x {y=a+|x|}

12/4/2018 26

If Then Else

(1) {y=a & x<0} y:=y-x {y=a+|x|} .

(4) {y=a & not(x<0)} y:=y+x {y=a+|x|} .

{y=a}

if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the IfThenElse rule

12/4/2018 27

While

 We need a rule to be able to make

assertions about while loops.

 Inference rule because we can only draw

conclusions if we know something about

the body

 Let’s start with:

{ ? } C { ? }

{ ? } while B do C od { P }

12/4/2018 28

While

 The loop may never be executed, so if

we want P to hold after, it had better

hold before, so let’s try:

{ ? } C { ? }

{ P } while B do C od { P }

12/4/2018 29

While

 If all we know is P when we enter the

while loop, then we all we know when

we enter the body is (P and B)

 If we need to know P when we finish

the while loop, we had better know it

when we finish the loop body:

{ P and B} C { P }

{ P } while B do C od { P }

12/4/2018 30

While

 We can strengthen the previous rule

because we also know that when the

loop is finished, not B also holds

 Final while rule:

{ P and B } C { P }

{ P } while B do C od { P and not B }

12/4/2018 31

While

{ P and B } C { P }

{ P } while B do C od { P and not B }

 P satisfying this rule is called a

loop invariant because it must

hold before and after each

iteration of the loop

12/4/2018 32

While

 While rule generally needs to be used

together with precondition strengthening

and postcondition weakening

 There is NO algorithm for computing

the correct P; it requires intuition and

an understanding of why the program

works

Counting up to n

x := 0;

while (x < n) {

x := x + 1

}

Want to show: x >= n && n >= 0

12/4/2018 33

P ≡ x ≤ n ∧ 0 ≤ n

Sum of numbers 1 to n

x := 0

y := 0

while y < n {

y := y + 1;

x := x + y

}

Want to show: x = 1 + ... + n

P ≡ x = 1 + ... + y

∧ y ≤ n

∧ 0 ≤ n

Fibonacci

x = 0; y = 1;

z = 1;

while (z < n) {

y := x + y;

x := y – x;

z := z + 1

}

Want to show: y = fib n

P ≡ y = fib z

∧ x = fib (z-1)

∧ z ≤ n

∧ 1 ≤ n

List Length

x = lst; y = 0

while (x ≠ []) {

x := tl x;

y := y + 1

}

Want to show: y = len lst

P ≡ y + len x = len lst

12/4/2018 37

Example (Use of Loop Invariant in Full Proof)

 Let us prove
{x>= 0 and x = a}

fact := 1;

while x > 0 do (fact := fact * x; x := x – 1) od

{fact = a!}

12/4/2018 38

Example

 We need to find a condition P that is true

both before and after the loop is executed,

and such that

(P and not x > 0) => (fact = a!)

12/4/2018 39

Example

 First attempt:

P = {a! = fact * (x!)}

 Motivation:

 What we want to compute: a!

 What we have computed: fact

which is the sequential product of a down

through (x + 1)

 What we still need to compute: x!

12/4/2018 40

Example

By post-condition weakening suffices to show

1. {x>=0 and x = a}
fact := 1;

while x > 0 do (fact := fact * x; x := x –1) od

{a! = fact * (x!) and not (x > 0)}

And

2. a! = fact * (x!) and not (x > 0) => fact = a!

12/4/2018 41

Problem!! (Dead End)

2. a! = fact * (x!) and not (x > 0) => fact = a!

 Don’t know this if x < 0 !!
 Need to know that x = 0 when loop terminates

 Need a new loop invariant

 Try adding x >= 0

 Then will have x = 0 when loop is done

Second try, let us combine the two:
P  a! = fact * (x!) and x >=0

We need to show:

1. {x>=0 and x = a}

fact := 1;

{P}

while x > 0 do (fact := fact * x; x := x –1) od

{P and not x > 0}

And

2. P and not x > 0  fact = a!
42

Example

43

Example

 For Part 1, by sequencing rule it suffices to show

3. {x>=0 and x = a}
fact := 1

{a! = fact * (x!) and x >=0 }

And

4. {a! = fact * (x!) and x >=0}
while x > 0 do
(fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >=0 and not (x > 0)}

{x>= 0 and x = a} (*this was part 1 to prove*)

fact := 1;

while x > 0 do (fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >=0 and not (x>0)}

12/4/2018 44

Example

 (Part 3 – Assignment) Suffices to show that

a! = fact * (x!) and x >= 0

holds before the while loop is entered

 (Part 4 – While Loop) And that if

(a! = fact * (x!)) and x >= 0 and x > 0

holds before we execute the body of the loop, then

(a! = fact * (x!)) and x >= 0

holds after we execute the body (part 4)

45

Example

(Part 3) By the assignment rule, we have
{a! = 1 * (x!) and x >= 0}

fact := 1
{a! = fact * (x!) and x >= 0}

Therefore, to show (3), by precondition
strengthening, it suffices to show

(x>= 0 and x = a)  (a! = 1 * (x!) and x >= 0)

It holds because x = a  x! = a! .

 So, we have that a! = fact * (x!) and x >= 0

holds at the start of the while loop!

12/4/2018 46

Example

To prove (Part 4):

{a! = fact * (x!) and x >=0}
while x > 0 do

(fact := fact * x; x := x –1)
od

{a! = fact * (x!) and x >=0 and not (x > 0)}

we need to show that (a! = fact * (x!)) and x >= 0

is a loop invariant

 We will use assignment rule, sequencing rule and

precondition strengthening rule

12/4/2018 47

Example

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{Q}

 By the assignment rule, show

{Q}

x := x – 1

{(a! = fact * (x!)) and x >= 0}

12/4/2018 48

Example

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{Q}

 From the assignment rule, we know:

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1

{(a! = fact * (x!)) and x >= 0}

12/4/2018 49

Example

 We look into the loop body:
 (fact := fact * x; x := x – 1)

 By the sequencing rule, we need to show 2 things:
 By the assignment rule, show

{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

 From the assignment rule, we know:

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1

{(a! = fact * (x!)) and x >= 0}

12/4/2018 50

Example

 By the assignment rule, we have that

{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}
fact = fact * x

{(a! = fact * ((x-1)!)) and x – 1 >= 0}

 By Precondition strengthening, it suffices to show that

((a! = fact * (x!)) and x >= 0 and x > 0) 

((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0)

From algebra we know that fact * x * (x – 1)! = fact * x!

and (x > 0)  x – 1 >= 0 since x is an integer, so

{(a! = fact * (x!)) and x >= 0 and x > 0} 

{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

Second try, let us combine the two:
P  a! = fact * (x!) and x >=0

We need to show:

1. {x>=0 and x = a}

fact := 1;

{P}

while x > 0 do (fact := fact * x; x := x –1) od

{P and not x > 0}

And

2. P and not x > 0  fact = a!
51

Example



12/4/2018 52

Example

 For Part 2, we need

(a! = fact * (x!) and x >=0 and not (x > 0))  (fact = a!)

Since we know (x >=0 and not (x > 0))  (x = 0) so

fact * (x!) = fact * (0!)

And since from algebra we know that 0! = 1,

fact * (0)! = fact * 1 = fact

 Therefore, we can prove:

(a! = fact * (x!) and x >=0 and not (x > 0))  (fact = a!)

53

Example

 We proved that (a! = fact * (x!)) and x >= 0 is the loop

invariant

 We proved the sequence rule for the assignment and wile

statements

 We applied postcondition weakening to prove the final

predicate

This finishes the proof!
{x >= 0 and x = a}

fact := 1;

while x > 0 do (fact := fact * x; x := x – 1) od

{fact = a!}



