Programming Languages and Compilers
(CS 421)

#5: Recursion, lists, forward/head rec, tail rec, maps
#6: Higher-order recursion, fold left/right, intro to CPS

Madhusudan Parthasarathy
http://courses.engr.illinois.edu/cs421

Based on slides by Elsa Gunter, which in turn is partly
based on slides by Mattox Beckman, as updated by
Vikram Adve and Gul Agha

9/18/2018 1

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
:int =120

“rec” keyword needed in Ocaml for recursive function
declarations

9/18/2018

Recursion Example

Compute n? recursively using:
n2=(2*n-1) + (n-1)?

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
|n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>
nthsq 3;;
- 1int=9

Structure of recursion similar to inductive proof

9/18/2018

i Recursion and Induction

let rec nthsg n = match n with 0 -> 0
ln->2*n-1)+nthsg(n-1) ;;

For termination:
= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are somehow
smaller - must progress to base case

= If or match must contain base case

Failure of these may cause failure of termination

9/18/2018

i Lists

= First example of a recursive datatype (aka algebraic
datatype)

= Unlike tuples, lists are homogeneous in type (all elements
same type)

9/18/2018 5

i Lists [4:5;97 = 1n6b{:11))

= Cows (\) “W(T’-: o (% Cj)))

s List can take one of two forms:)

: . Cons(* “
= Empty list, written [] /7

= Non-empty list, written X :: xs

= X iS head element, xs is tail list, :: called
llconS”

= Syntactic sugar@== X[]

s [X1;X2; ..;xn] ==x1::x2: .. iixni[]

/

9/18/2018

i Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 :intlist = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;
- : bool =
ool = true (x, L)) (&\)WJ < \ﬂ

fib5 @ fib6;;
-:intlist=[8;5;3;2;1;1;13;8;5; 3; 2; 1; 1]

9/18/2018

i Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here used with type int

9/18/2018 8

i Question

R .

Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5; 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[“hi”; “there”]; [“wahcha”]; [1; [“doin™]]

9/18/2018

i Answer

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5; 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[“hi”; “there”]; [“wahcha”]; [1; [“doin™]]

R .

= 3 is invalid because of last pair

9/18/2018 10

i Functions Over Lists

Xyt L
let rec double_up list = -
match list — T
with[]->[] (* pattern before ->,expression after *)

| (X :: xS) -> (X :: X :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;
val fib5_2 :intlist =[8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]

9/18/2018 11

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =

——\ ey
match list R\WM QQ ’
with [] -> []

| (X::Xs) -> poor_rev xs @ [Xx];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
_ : Strlng IiSt —_ [lltherell; Iltherell; llhill; Ilhill]

9/18/2018

12

i Question: Length of list

= Problem: write code for the length of the list
¢“x « How to start?

let length | = —
o 4wt (3 =9

(bt) = 4+ Ung ¥)

9/18/2018

13

i Question: Length of list

= Problem: write code for the length of the list

=« What result do we given when the list is empty?
What result do we give when it is hot empty?

let rec length | =
match | with []-> 0
| (@ :: bs) -> 1 + length bs

9/18/2018 14

i Same Length

= How can we efficiently answer if two lists have the same

length? ,Q\ J(2;,
/ -~
(:j C]
) e
N !
xexs o — P

9/18/2018

15

i Same Length

= How can we efficiently answer if two lists have the same

length?

let rec same_length

match listl with []

istl list2 =
->

(match list2 with [] -> true

| (y::ys) -> fa
| (X::xs) ->

se)

(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/18/2018

16

i Structural Recursion

= "Everything is a tree”
= Lists as terms/trees; recursion on terms/trees

= Algebraic datatypes

9/18/2018

17

i Structural Recursion [

Covyg

= Functions on recursive datatypes (e.g. lists) tend to
be recursive

= Recursion over recursive datatypes generally by
structural recursion

= Recursive calls made to components of structure of the
same recursive type

= Base cases of recursive types stop the recursion of the
function

9/18/2018 18

i Structural Recursion : List Example

let rec length list = match list
with[]->0 (* Nil case *)
| X ;i xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case
= Cons case recurses on component list xs

9/18/2018

19

i Forward/head Recursion

= In Structural Recursion, split input into components and
(eventually) recurse on components, and compute based

on their results
s Forward Recursion form of Structural Recursion

= In forward recursion, first call the function recursively on all
recursive components, and then build final result from

partial results

= Wait until all substructures has been worked on before

building answer
9/18/2018 20

i Forward Recursion: Examples
7x 2§) =)e)rY 0“‘“"’“”” ’

let rec double_up list = "
. _ /\/‘/_‘
match list rors O, (bt 2)) >

with[]->[] s (=,
| (X ::xs)-> (X :: X ::double_up xs),,
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (X::xs) -> let pr = poor_rev xs in pr @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/18/2018 21

i Question

= How do you write length with forward
recursion?

let rec length | =

9/18/2018

22

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] -> O

| (@::bs) -> [, 249“5"“\“
n (1+2)

9/18/2018

23

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@ :: bs) -> length bs

9/18/2018

24

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

9/18/2018

25

+

Your turn now

Try Problem 2 on ML2

9/18/2018

i Aggregation

Compute the product of the numbers in a list:

Version 1:

—aed L=
JM“N IPWM’M (31— 1

() = (b (b2 V)

9/18/2018

27

i Aggregation

Compute the product of the numbers in a list:

Version 1:

let rec prod | =

match | with [] -> 1

| (X :: rem) -> X * prod rem;;
val prod : int list -> int = <fun>

9/18/2018

28

i Aggregation

Compute the product of the numbers in a list:

Version 2: /Q 1 aix J, 1
u W = PVD,
od-“u “()' -

o et whi L3P

9/18/2018

29

i Aggregation

Compute the product of the numbers in a list:
Version 2:

let prod list =
let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/18/2018

30

i Difference between the two versions

prod([5;4;9;11])
Version 1:
5*prod([4;9;11]=5*%(4*prod([9;11]))
= 5%(4*(9*prod([11]))) = 5*(4*(9*(11*prod([]))))
= 5*(4*%(9%(11*1)))

Version 2:
prod_aux([5;4;9;11], 1)
= prod_aux([4;9;11], 1*5)
= prod_aux([9;11], (1*5)*4)
= prod_aux([11], ((1*5)*4)*9)
= prod_aux([], (((1*5)*4)*9)*11) = (((1*5)*4)*9)*11

9/18/2018 31

i An Important Optimization

= When a function call is made, the
return address needs to be saved

Norr:rllal to the stack so we know to where
ca to return when the call is finished
h
= What if 7calls gand g calls 4, but
J calling A is the last thing g does (a
f taill call)?

= Then /A can return directly to 7
instead of g

9/18/2018 32

Tail Recursion

= A recursive program is tail recursive if all recursive
calls are tail calls

= Tail recursive programs may be optimized to be
implemented as (while) loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial results
= May require an auxiliary function

9/18/2018 33

i Question

= How do you write length with tail recursion?

let length | =
let rec length_aux list n =

N

9/18/2018 34

i Question

= How do you write length with tail recursion?

let length | =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)
in length_aux |1 0

9/18/2018 35

+

Your turn now

Try Problem 4 on MP2

9/18/2018

i Mapping Recursion

= One common form of structural recursion

applies a function to each element in the
structure

let rec doubleList list = match list
with[]->1]
| X::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3:4];;
- 1 int list = [4; 6; 8]

9/18/2018

37

i Mapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh):: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;
- rint list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
cintlist =[12; 7; 4; 2; 1; 0; O]

38

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>

doubleList [2;3:4];;
- 1 int list = [4; 6; 8]

= Same function, but no rec

9/18/2018 39

i Your turn now

Write a function
make_app : (('a -> 'b) * 'a) list -> 'b list

that takes a list of function — input pairs and gives

the result of applying each function to its argument.
Use map, no explicit recursion.

let make_app | =

9/18/2018 40

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4:6];;
- 1 int = 48
= Computes (2 * (4 * (6 * 1)))

9/18/2018 41

i Folding Functions over Lists

let rec sumlist list = match fist with|| ,@ 1 soabt Jist
[1-> 0| x::xs -> x + sumlist xs;; _
val sumlist : int list -> int = <fun> 4%\0\7?* L
sumlist [2;3:4];; @M 5 \,\H)
;int=9
let rec prodlist list = match list with W/
[]-> 1] x::xs -> x * prodlist xs;; \5»(9&5
val prodlist : int list -> int = <fun> Lex L
prodlist [2;3:4];; (7 W‘Y)
-rint= 24 ﬁbr

9/18/2018 42

i Folding Functions over Lists

How are the following functions similar?

let rec sumList list = match list with
[1->|0]| x::xs -> x + sumList xs;;

val sumList Tintlist -> int = <fun>

sumlList [2;3;4];;

Csint=9 Base Case

let rec multhistlist = match list with

[1->|1]| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;3;4];;

-:int= 24

9/18/2018

43

i Folding Functions over Lists

How are the following functions similar?

let rec sumList list = match list with
[1->[0]| x::xs -> x +|sumList xs};
val sumList : int list -> int = <fun>

sumlList [2;3:4];;

: Recursive Call
-:int=9

let rec multList list = match list with
[1->]1]] x::xs -> x * multList xs};

val multList : int list -> int = <fun>

multList [2;3;4];;

-:int= 24

9/18/2018 44

i Folding Functions over Lists

How are the following functions similar?

let rec sumList list = match list with

[1->|0]| x::xs ->| x|+|sumList xs};
val sumList : int list -> Int= n>

sumlList [2;3:4];;
-:int=9

Head Element

let rec multList list = ist with
[1->|1]] x::xs ->|x* ImultList xs};

val multList : int list -> int = <fun>

multList [2;3;4];;

-:int= 24

9/18/2018 45

i Folding Functions over Lists

How are the following functions similar?

let rec sumList list = match list with
[1->[0]| x::xs ->[x]+[sumList xs};

val sumList : int list -> Int= <fun>
#'Siun?EIS; [2;3;4]3; Combining Operation
let rec multList list = ch list with

[1->[T]| x::xs -3[x * [multList xs};
val multList : int list -> Int = <fun>
multList [2;3;4];;

-:int=24

9/18/2018 46

i Folding Functions over Lists

How are the following functions similar?

let rec sumList list = match list with

[1->[0]1 x::xs ->3[x]+ e

val sumList : int list -> Int= <fun>
#'Siun?EIS; [2;3;4]3; Combining Operation
let rec multList list = ch list with

[1->[T]] x::xs -3[X * |G
val multList : int list -> Int = <fun>
multList [2;3;4];;

-1 int = 24R

9/18/2018 47

i fold_right
et —we C

/&\d_vij\/& J[Lob
g L wile £ " %5 b
7 (£ (¢ Apaer])

\ Q(','.XS) —

9/18/2018

i Recursing over lists: fold_right P gt A
& .}*

7 =™ ¢ -
, N ¥
R o - - A
- IR, s
4 -~ "
{ \ ¥
‘.4_ N\ = .
- o 4
. \ 4
4 A\ ~n
¢ A
E“ \\
P
3
N
I \\c— "

let rec fold_right f list b =

an]iiﬁdl?]”-s: b Te Primitive
| (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b) -> "'alist -> 'b -> 'b = <fun>

fold_right
(fun s -> fun () -> print_string s)
[llhi!l; |Itherell]
0

therehi- : unit = ()

9/18/2018 49

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>

multList [2:4:6];;
- 1 int = 48

50

What about append? 4 L

M X T /:WJ‘“"J‘D
wa\ A, Aa L\

fb\ol ﬂf) F““»‘ 71(””’7\'\ > L h

9/18/2018 51

i Encoding Recursion with Fold

let rec append listl list2 = match listl with
[1-> list2 | x::xs -> x :: append xs list2;;
val apaénd : 'a list -> '|a list ->\§ list = <fun>

Base Case Operation || Recursive Call

let append listl listZ™=
fold_right (fun x y -> x :iy) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-intlist = [1; 2; 3; 4; 5; 6]

9/18/2018 52

i Question

let rec length | =
match | with []-> 0
| (@ :: bs) -> 1 + length bs

How do you write length with fold_right, but no
explicit recursion?

b lejm [%‘aw?\d’ ﬁw\«-—) +f>

1
O

let length list =
List.fold_right (fun x->funn-> n+1)list0

53

i What about map?

let rec map f list = match list with [] -> []
| (h::t) -> (f h) ::((map f t);

54

i Map from Fold

let map f list =

fold_right (fun x-> funy ->fx::y)list[1;;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map ((+)1) [1;2;3];;

- rint list = [2; 3; 4]

= Can you write fold_right (or fold_left) with just
map? How, or why not?

9/18/2018 55

i Iterating over lists: fold_left \»\\"}& -

et ¥
let prod list =

let rec prod_aux I& = { /F

a \is\’

match | with > ac

e ————

N j;&’r W‘“"

| (y :: rest) -> prod_aux rest (E_C_Ciy)

in prod_aux list 1;; -
Z L] —= ¢
l J veyy —7
let sum list =
let rec sum_aux lgacc)= , /p)\ d'\eH {
match | with [] ->(acc) /s' \j)
| (y :: rest) -> sum_aux rest (acc + y) (—9 o
in sum_aux list 0;; - e

—
—

9/18/2018 56

i [terating over lists: fold_|left

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('fa->'b->"'a) -> 'a-> b list -> 'a = <fun>

fold_|left
(fun () -> print_string)
0
["hi": "there"];;
hithere- : unit = ()

9/18/2018

57

i Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc

| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list.1;;
val prod : int list=> int = <flun>

Init Acc Value | [Recursive Call | | Operation

let prod list =
List.fold_left (fun accy -> acc * y) 1 list;;
val prod: int list -> int = <fun>
prod [4;5;6];;
- 1 int =120

9/18/2018 58

i Question

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but no explicit
recursion?

D ,Q}Ns\’l/\ { = J‘PMTH* s o b\aQ* acc)

O

4
let length list = List.fold_left (fun n->funx->n+ 1) 0 list

59

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a =
<fun>

fold_left f a [Xy; X5;...;%,] = f(...(f (f @ X{) X5)...)X,

let rec fold_right f list b = match list
with[]->b | (x:: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->"alist->'b->"b =
<fun>

fold_right f [X;; X5;...;%x.] b = £ X, (f X, (...(f X, b)...))

9/18/2018 60

i Recall

let rec poor_rev list = match list
W|th [1->[]
| (X::XS) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

=| What is its running time?

9/18/2018 61

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::XS) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/18/2018 62

i Tail Recursion - Example

Kn

—

o

aq
let rec rev_aux list revlist = ﬁ

match list with [] -> revlist
| X 12 Xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/18/2018

63

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @[2]) @[1] =
= ([J@[3]) @[2]) @[1]) =

s (B]@[2]) @[1] =

s C([]@[2]) @[1] =

= [32]@[1] =

= 3 ([2] @[1]) =

s 3020 (]@[1]) =13, 2, 1]

9/18/2018

64

i Comparison

m [EV [1,2 3] =

= Fev_aux
= Fev_aux
= Fev_aux
= Fev_aux

9/18/2018

1,2,3][]=
2,3][1] =

3]1[2,1] =
1[3,2,1] =

[3,2,1]

65

‘L Folding - Tail Recursion

- # letrev list =
fold left
({:m\ ace — 'G'W' »\\> &CC>

Ly

9/18/2018

66

Folding - Tail Recursion

- # let rev list =
i fold left
: (funl->funx->x:1) //comb op

[] //accumulator cell
IISt /* Link list node */

struct Node
{ int data; struct Node* next; };

/* Function to reverse the linked list */
static void reverse(struct Node** head_ref)
{
struct Node™ prev = NULL;
struct Node™ current = *head_ref;
struct Node* next;
while (current != NULL)
{ next =current->next;
current->next = prev;
prev = current;
current = next;

}
9/18/2018 *head_ref = prey;

i Folding

= Can replace recursion by fold_right in any forward
primitive recursive definition

= Primitive recursive means it only recurses on immediate
subcomponents of recursive data structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/18/2018 68

i Recursion on trees: hard for talil

recursion
(e ()¢ 3)

9/18/2018 69

i Continuation Passing Style

= A programming technique for all forms of ‘;QQvn;

local” control flow: v OF 5.
= non-local jumps){ NS
= exceptions €, €L

= general conversion of non-tail calls to tail calls

= Essentially it’ s a higher-order function version of
GOTO

n /all-recursion on acid

9/18/2018 70

i Continuations

= Idea: Use functions to represent the control flow of
a program

= Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns” no result

= Function receiving the result called a continuation

= Continuation acts as “accumulator” for work still to
be done

71

