
9/18/2018 1

Programming Languages and Compilers 
(CS 421)

#5: Recursion, lists, forward/head rec, tail rec, maps
#6: Higher-order recursion, fold left/right, intro to CPS 

Madhusudan Parthasarathy
http://courses.engr.illinois.edu/cs421

Based on slides by Elsa Gunter, which in turn is partly 
based on slides by Mattox Beckman, as updated by 
Vikram Adve and Gul Agha



9/18/2018 2

Recursive Functions

# let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
# factorial 5;;
- : int = 120

“rec” keyword needed in Ocaml for recursive function 
declarations



9/18/2018 3

Recursion Example
Compute n2 recursively using:

n2 = (2 * n - 1) + (n - 1)2

# let rec nthsq n =         (* rec for recursion *)

match n                     (* pattern matching for cases *)

with 0 -> 0                 (* base case *)

| n -> (2 * n -1)          (* recursive case *)

+ nthsq (n -1);;   (* recursive call *)

val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof



9/18/2018 4

Recursion and Induction

# let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

For termination:
 Base case is the last case; it stops the computation
 Recursive call must be to arguments that are somehow 

smaller - must progress to base case
 if or match must contain base case

Failure of these may cause failure of termination



9/18/2018 5

Lists

 First example of a recursive datatype (aka algebraic 
datatype)

 Unlike tuples, lists are homogeneous in type (all elements 
same type)



9/18/2018 6

Lists

 List can take one of two forms:
 Empty list, written [ ]
 Non-empty list, written  x :: xs

 x is head element, xs is tail list, :: called 
“cons”

 Syntactic sugar: [x] == x :: [ ]
 [ x1; x2; …; xn] == x1 :: x2 :: … :: xn :: [ ]



9/18/2018 7

Lists

# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

# (8::5::3::2::1::1::[ ]) = fib5;;
- : bool = true

# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]



9/18/2018 8

Lists are Homogeneous

# let bad_list = [1; 3.2; 7];;

Characters 19-22:
let bad_list = [1; 3.2; 7];;

^^^
This expression has type float but is here used with type int



9/18/2018 9

Question

 Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]



9/18/2018 10

Answer

 Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]

 3 is invalid because of last pair



9/18/2018 11

Functions Over Lists

# let rec double_up list =
match list
with [ ] -> [ ]         (* pattern before ->,expression after *)

| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]



9/18/2018 12

Functions Over Lists

# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

# let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]



Question: Length of list

 Problem: write code for the length of the list
 How to start?

let length l = 

9/18/2018 13



Question: Length of list

 Problem: write code for the length of the list
 What result do we given when the list is empty? 

What result do we give when it is not empty?

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

9/18/2018 14



Same Length

 How can we efficiently answer if two lists have the same 
length?

9/18/2018 15



Same Length

 How can we efficiently answer if two lists have the same 
length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) -> 
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/18/2018 16



9/18/2018 17

Structural Recursion

 “Everything is a tree”
 Lists as terms/trees; recursion on terms/trees
 Algebraic datatypes



9/18/2018 18

Structural Recursion

 Functions on recursive datatypes (e.g. lists) tend to 
be recursive

 Recursion over recursive datatypes generally by 
structural recursion
 Recursive calls made to components of structure of the 

same recursive type
 Base cases of recursive types stop the recursion of the 

function



9/18/2018 19

Structural Recursion : List Example

# let rec length list = match list
with [ ] -> 0                      (* Nil case *)
| x :: xs -> 1 + length xs;;  (* Cons case *)

val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4

 Nil case [ ]  is base case
 Cons case recurses on component list xs



9/18/2018 20

Forward/head Recursion

 In Structural Recursion, split input into components and 
(eventually) recurse on components, and compute based
on their results

 Forward Recursion form of Structural Recursion

 In forward recursion, first call the function recursively on all 
recursive components, and then build final result from 
partial results

 Wait until all substructures has been worked on before
building answer



9/18/2018 21

Forward Recursion: Examples

# let rec double_up list =
match list
with [ ] -> [ ]

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let pr = poor_rev xs in pr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>



Question

 How do you write length with forward 
recursion?

let rec length l =

9/18/2018 22



Question

 How do you write length with forward 
recursion?

let rec length l =
match l with [] ->
| (a :: bs) ->

9/18/2018 23



Question

 How do you write length with forward 
recursion?

let rec length l =
match l with [] ->
| (a :: bs) -> 1 + length bs

9/18/2018 24



Question

 How do you write length with forward 
recursion?

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

9/18/2018 25



Your turn now

Try Problem 2 on ML2 

9/18/2018 26



9/18/2018 27

Aggregation

Compute the product of the numbers in a list:

Version 1:



9/18/2018 28

Aggregation

Compute the product of the numbers in a list:

Version 1:

# let rec prod l =
match l with [] -> 1
| (x :: rem) -> x * prod rem;;

val prod : int list -> int = <fun>



9/18/2018 29

Aggregation

Compute the product of the numbers in a list:

Version 2:



9/18/2018 30

Aggregation

Compute the product of the numbers in a list:

Version 2:

let prod list =
let rec prod_aux l acc =

match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;
val prod : int list -> int = <fun>



Difference between the two versions

prod([5;4;9;11])
Version 1:

5*prod([4;9;11]=5*(4*prod([9;11]))
= 5*(4*(9*prod([11]))) = 5*(4*(9*(11*prod([]))))
= 5*(4*(9*(11*1)))

Version 2:
prod_aux([5;4;9;11], 1)
= prod_aux([4;9;11], 1*5)
= prod_aux([9;11], (1*5)*4)
= prod_aux([11], ((1*5)*4)*9)
= prod_aux([], (((1*5)*4)*9)*11) = (((1*5)*4)*9)*11

9/18/2018 31



9/18/2018 32

Normal 
call

h

g

f

…

An Important Optimization

 When a function call is made, the 
return address needs to be saved 
to the stack so we know to where 
to return when the call is finished

 What if f calls g and g calls h, but 
calling h is the last thing g does (a 
tail call)?

 Then h can return directly to f
instead of g



9/18/2018 33

Tail Recursion

 A recursive program is tail recursive if all recursive 
calls are tail calls

 Tail recursive programs may be optimized to be 
implemented as (while) loops, thus removing the 
function call overhead for the recursive calls

 Tail recursion generally requires extra 
“accumulator” arguments to pass partial results
 May require an auxiliary function



Question

 How do you write length with tail recursion?

let length l =
let rec length_aux list n =

in

9/18/2018 34



Question

 How do you write length with tail recursion?

let length l =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

9/18/2018 35



Your turn now

Try Problem 4 on MP2 

9/18/2018 36



9/18/2018 37

Mapping Recursion

 One common form of structural recursion 
applies a function to each element in the 
structure

# let rec doubleList list = match list
with [ ] -> [ ]
| x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

# doubleList [2;3;4];;
- : int list = [4; 6; 8]



38

Mapping Functions Over Lists

# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]



9/18/2018 39

Mapping Recursion

 Can use the higher-order recursive map 
function instead of direct recursion

# let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

# doubleList [2;3;4];;
- : int list = [4; 6; 8]

 Same function, but no rec



Your turn now

Write a function  
make_app : ((‘a -> ‘b) * ‘a) list -> ‘b list 

that takes a list of function – input pairs and gives 
the result of applying each function to its argument.  
Use map, no explicit recursion.

let make_app l = 

9/18/2018 40



9/18/2018 41

Folding Recursion

 Another common form “folds” an operation 
over the elements of the structure

# let rec multList list = match list
with [ ] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
 Computes (2 * (4 * (6 * 1)))



9/18/2018 42

Folding Functions over Lists

How are the following functions similar?
# let rec sumlist list = match list with
[ ] -> 0 | x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
- : int = 9
# let rec prodlist list = match list with
[ ] -> 1 | x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24



9/18/2018 43

Folding Functions over Lists

How are the following functions similar?
# let rec sumList list = match list with
[ ] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
# sumList [2;3;4];;
- : int = 9
# let rec multList list = match list with
[ ] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;3;4];;
- : int = 24

Base Case



9/18/2018 44

Folding Functions over Lists

How are the following functions similar?
# let rec sumList list = match list with
[ ] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
# sumList [2;3;4];;
- : int = 9
# let rec multList list = match list with
[ ] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;3;4];;
- : int = 24

Recursive Call



9/18/2018 45

Folding Functions over Lists

How are the following functions similar?
# let rec sumList list = match list with
[ ] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
# sumList [2;3;4];;
- : int = 9
# let rec multList list = match list with
[ ] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;3;4];;
- : int = 24

Head Element



9/18/2018 46

Folding Functions over Lists

How are the following functions similar?
# let rec sumList list = match list with
[ ] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
# sumList [2;3;4];;
- : int = 9
# let rec multList list = match list with
[ ] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;3;4];;
- : int = 24

Combining Operation



9/18/2018 47

Folding Functions over Lists

How are the following functions similar?
# let rec sumList list = match list with
[ ] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
# sumList [2;3;4];;
- : int = 9
# let rec multList list = match list with
[ ] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;3;4];;
- : int = 24R

Rec value

Rec value

Combining Operation



fold_right

9/18/2018 48



9/18/2018 49

Recursing over lists: fold_right

# let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

The Primitive 
Recursion Fairy



50

Folding Recursion

 multList folds to the right
 Same as:

# let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48



What about append?

9/18/2018 51



9/18/2018 52

Encoding Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]



Question

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

How do you write length with fold_right, but no 
explicit recursion?

53

let length list =
List.fold_right (fun x -> fun n ->  n + 1) list 0



What about map?

let rec map f list =  match list  with [] -> []
| (h::t) -> (f h) :: (map f t);;

54



9/18/2018 55

Map from Fold

# let map f list =
fold_right (fun x -> fun y -> f x :: y) list [ ];;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]

 Can you write fold_right (or fold_left) with just 
map? How, or why not?



9/18/2018 56

Iterating over lists: fold_left

let prod list =
let rec prod_aux l acc =
match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;

let sum list =
let rec sum_aux l acc =
match l with [] -> acc
| (y :: rest) -> sum_aux rest (acc + y)

in sum_aux list 0;;



9/18/2018 57

Iterating over lists: fold_left

# let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

# fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()



9/18/2018 58

Encoding Tail Recursion with fold_left

# let prod list = let rec prod_aux l acc =
match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list 1;;

val prod : int list -> int = <fun>
Init Acc Value      Recursive Call      Operation

# let prod list = 
List.fold_left (fun acc y -> acc * y) 1 list;;

val prod: int list -> int = <fun>
# prod [4;5;6];;
- : int =120



Question

let length l =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0
 How do you write length with fold_left, but no explicit 

recursion?

59
let length list = List.fold_left (fun n -> fun x -> n + 1) 0 list



9/18/2018 60

Folding

# let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = 
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

# let rec fold_right f list b = match list
with [ ] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = 
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))



9/18/2018 61

Recall

# let rec poor_rev list = match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

 What is its running time?



9/18/2018 62

Quadratic Time

 Each step of the recursion takes time 
proportional to input

 Each step of the recursion makes only one 
recursive call.

 List example:
# let rec poor_rev list = match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>



9/18/2018 63

Tail Recursion - Example

# let rec rev_aux list revlist =
match list with [ ] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [ ];;
val rev : 'a list -> 'a list = <fun>

 What is its running time?



9/18/2018 64

Comparison

 poor_rev [1,2,3] =
 (poor_rev [2,3]) @ [1] =
 ((poor_rev [3]) @ [2]) @ [1] =
 (((poor_rev [ ]) @ [3]) @ [2]) @ [1] =
 (([ ] @ [3]) @ [2]) @ [1]) =
 ([3] @ [2]) @ [1] =
 (3:: ([ ] @ [2])) @ [1] =
 [3,2] @ [1] =
 3 :: ([2] @ [1]) =
 3 :: (2:: ([ ] @ [1])) = [3, 2, 1]



9/18/2018 65

Comparison

 rev [1,2,3] =
 rev_aux [1,2,3] [ ] =
 rev_aux [2,3] [1] =
 rev_aux [3] [2,1] =
 rev_aux [ ] [3,2,1] = [3,2,1] 



9/18/2018 66

Folding - Tail Recursion

- # let rev list =
- fold_left
-



9/18/2018 67

Folding - Tail Recursion

- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l)     //comb op

[]             //accumulator cell
list /* Link list node */

struct Node
{ int data;    struct Node* next;  };

/* Function to reverse the linked list */
static void reverse(struct Node** head_ref)
{
struct Node* prev = NULL;
struct Node* current = *head_ref;
struct Node* next;
while (current != NULL)
{ next = current‐>next;
current‐>next = prev;
prev = current;
current = next;

}
*head_ref = prev;

}



9/18/2018 68

Folding

 Can replace recursion by fold_right in any forward 
primitive recursive definition
 Primitive recursive means it only recurses on immediate 

subcomponents of recursive data structure

 Can replace recursion by fold_left in any tail 
primitive recursive definition



Recursion on trees: hard for tail 
recursion

9/18/2018 69



9/18/2018 70

Continuation Passing Style

 A programming technique for all forms of “non-
local” control flow:
 non-local jumps
 exceptions
 general conversion of non-tail calls to tail calls

 Essentially it’s a higher-order function version of 
GOTO

 Tail-recursion on acid



71

Continuations

 Idea: Use functions to represent the control flow of 
a program

 Method: Each procedure takes a function as an 
argument to which to pass its result; outer 
procedure “returns” no result

 Function receiving the result called a continuation

 Continuation acts as “accumulator” for work still to 
be done


