Programming Languages and Compilers

 (CS 421)\#5: Recursion, lists, forward/head rec, tail rec, maps \#6: Higher-order recursion, fold left/right, intro to CPS

Madhusudan Parthasarathy

 http://courses.engr.illinois.edu/cs421Based on slides by Elsa Gunter, which in turn is partly based on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Recursive Functions

\# let rec factorial $\mathrm{n}=$ if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int $->$ int $=<$ fun $>$
\# factorial 5;;
: int = 120
"rec" keyword needed in Ocaml for recursive function declarations

Recursion Example

Compute n^{2} recursively using:

$$
n^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $\mathrm{n}=$ match n
with 0 -> 0
| n -> (2 * $\mathrm{n}-1$) (* recursive case *)

+ nthsq ($\mathrm{n}-1$); ; (* recursive call *)
val nthsq : int -> int = <fun>
\# nthsq 3;;
- $:$ int = 9

Structure of recursion similar to inductive proof

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$
| n -> (2 * $\mathrm{n}-1)+$ nthsq ($\mathrm{n}-1$) ; ;
For termination:

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case

Failure of these may cause failure of termination

Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)

Lists $\quad[1 ; 5 ; 9]=1 \because:(5 \because[9\{::[]))$
 $$
=\operatorname{cons}(1, \cos (5, \operatorname{con}(9, \tau \bar{\eta})))
$$

- List can take one of two forms:
- Empty list, written [] $\quad \lambda^{\operatorname{Cons}(x, x s)}$
- Nonempty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar $[\mathrm{xx]}==\mathrm{x}::$ []
- [xx; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true

$$
\operatorname{appand}(x, y) \quad(\text { appand } x y)
$$

\# fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists are Homogeneous

```
# let bad_list = [1; 3.2; 7];;
```

Characters 19-22:

$$
\text { let bad_list = }[1 ; 3.2 ; 7] ; i
$$

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- 3 is invalid because of last pair

Functions Over Lists

 with [] -> [] (* pattern before ->,expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let fib5_2 = double_up fib5;;
val fib5_2 : int list =.[8; $8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1 ; 1 ; 1 ; 1]$

Functions Over Lists

\# let silly = double_up ["hi"; "there"];; val silly : string list = ["hi"; "hi"; "there"; "there"]
\# let rec poor_rev list = match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
\# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

- Problem: write code for the length of the list rec . How to start?
let length I =
match l situ []$\rightarrow 0$

$$
I(h:: t) \rightarrow 1+(\text { length } t)
$$

Question: Length of list

- Problem: write code for the length of the list
- What result do we given when the list is empty? What result do we give when it is not empty?
let rec length $\mathrm{I}=$
match I with [] -> 0
| (a :: bs) -> 1 + length bs

Same Length

- How can we efficiently answer if two lists have the same length?

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 = match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

Structural Recursion

- "Everything is a tree"
- Lists as terms/trees; recursion on terms/trees
- Algebraic datatypes

Structural Recursion [〕

Cons

- Functions on recursive datatypes (e.g. lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

\# let rec length list = match list
with [] -> $0 \quad(*$ Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list xs

Forward/head Recursion

- In Structural Recursion, split input into components and (eventually) recurse on components, and compute based on their results
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until all substructures has been worked on before building answer

Forward Recursion: Examples

\# let rec double_up list = match list

| (x :: xs) -> (x :: x : : double_up xs); ;
val double_up : 'a list ->'a list = <fun>
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> let pr = poor_rev xs in pr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Question

- How do you write length with forward recursion?
let rec length I =

Question

- How do you write length with forward recursion?
let rec length I = match I with [] ->0

$$
\begin{array}{r}
\mid(\mathrm{a}:: \mathrm{bs})->\operatorname{let} z=\log \mathrm{g}_{\mathrm{h}} \text { b } \\
\text { in }(1+z)
\end{array}
$$

Question

- How do you write length with forward recursion?
let rec length I = match I with [] ->
| (a :: bs) -> length bs

Question

- How do you write length with forward recursion?
let rec length I = match I with [] -> 0
| (a :: bs) -> 1 + length bs

Your turn now

Try Problem 2 on ML2

Aggregation

Compute the product of the numbers in a list:

Version 1:

$$
\begin{aligned}
& \text { let rec prod } \ell= \\
& \text { match l with }[J \rightarrow 1 \\
& \mid(h:: t) \rightarrow(h *(\operatorname{prod} t))
\end{aligned}
$$

Aggregation

Compute the product of the numbers in a list:

Version 1:

\# let rec prod I = match I with [] -> 1
| (x :: rem) -> x * prod rem;; val prod : int list -> int = <fun>

Aggregation

Compute the product of the numbers in a list:

Version 2:
let prod $l=$ prod_aux $l 1$
let rec prod -aux $\ell P=$ match ℓ with []$\rightarrow p$

$$
I(x:: x s) \rightarrow(\text { prod_anx xs } x * p)
$$

Aggregation

Compute the product of the numbers in a list:

Version 2:
let prod list =
let rec prod_aux I acc =
match I with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list 1;;
val prod : int list -> int = <fun>

Difference between the two versions

$$
\operatorname{prod}([5 ; 4 ; 9 ; 11])
$$

Version 1:

```
5*prod([4;9;11]=5*(4*prod([9;11]))
```

 \(=5^{*}\left(4^{*}\left(9^{*} \operatorname{prod}([11])\right)\right)=5^{*}\left(4^{*}\left(9^{*}\left(11^{*} \operatorname{prod}([])\right)\right)\right)\)
 \(=5^{*}\left(4^{*}\left(9 *\left(11^{*} 1\right)\right)\right)\)
 Version 2:

```
prod_aux([5;4;9;11], 1)
= prod_aux([4;9;11], 1*5)
= prod_aux([9;11],(1*5)*4)
= prod_aux([11], ((1*5)*4)*9)
= prod_aux([], (((1*5)*4)*9)*11) = (((1*5)*4)*9)*11
```

9/18/2018

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal/)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as (while) loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Question

- How do you write length with tail recursion?
let length $\mathrm{I}=$
let rec length_aux list $\mathrm{n}=$
in

Question

- How do you write length with tail recursion?
let length I =
let rec length_aux list $\mathrm{n}=$
match list with [] -> n
| (a :: bs) -> length_aux bs ($\mathrm{n}+1$)
in length_aux 10

Your turn now

Try Problem 4 on MP2

Mapping Recursion

One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list $=<$ fun >
\# doubleList [2;3;4];;

- : int list = [4; 6; 8]

Mapping Functions Over Lists

\# let rec map flist = match list
with [] -> []
(h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
\# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x-1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;
- : int list = [4; 6; 8]
- Same function, but no rec

Your turn now

Write a function
make_app : (('a -> 'b) * 'a) list -> 'b list
that takes a list of function - input pairs and gives the result of applying each function to its argument. Use map, no explicit recursion.
let make_app I =

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

Folding Functions over Lists

How are the following functions similar?
\# let rec sumlist list = match list with [] -> 0 | x:: xs -> x + sumlist xs;; val sumlist : int list -> int = <fun> \# sumlist [2;3;4];;

- : int = 9

\# let rec prodlist list = match list with [] -> 1 | x:: xs -> x * prodlist xs;; val prodlist : int list -> int = <fun> \# prodlist [2;3;4];;
- : int = 24

$$
\begin{aligned}
& \begin{array}{c}
\text { list } \\
1
\end{array}
\end{aligned}
$$

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> 0|| $\mathrm{x}:$:xs -> x + sumList xs;;
val sumList : int list -> int = <fun>
\# sumList [2;3;4];;

- : int = 9

Base Case

\# let rec multtist list = match list with [] -> 1 x: :xs -> x * multList xs;;
val multList : int list $->$ int $=<$ fun $>$
\# multList [2;3;4];;

- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> 0 x: $:$ xs -> x + sumList xs;
val sumList : int list $->$ int $=$ <fun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list = match list with
[] -> 1| x: :xs -> x * multList xs;
val multList : int list $->$ int $=<$ fun >
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> $0 \mid \mathrm{x}:: \mathrm{xs}->\mathrm{x}+$ SumList $\mathrm{xS} ;$;
val sumList : int list -> int $=<$ fun $>$
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list = match list with
[] -> 1| x::xs -> x^{*} multList xs;
val multList : int list $->$ int $=<$ fun $>$
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with

$$
\text { [] ->0| x::xs -> } \mathrm{x}+\text { sumList xs }
$$

val sumList : int list -> int =<tun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list $=$ match list with

$$
\text { [] -> } 1 \text { x: xs -ン } \mathrm{x} \text { * multList xs; }
$$

val multList : int list -> int $=$ <tun>
\# multList [2;3;4];;

- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> $0 \mid x:: x s$-> $\mathrm{x}+$ Rec value; ;
val sumList : int list -> int =<tun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list $=$ match list with
val multList : int list -> int = <tun>
\# multList [2;3;4];;
- : int = 24R

Recursing over lists: fold_right

\# let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> fx (fold_right f xs b);;
The Primitive
Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();
therehi- : unit =()

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun $x->$ fun $p->x * p$)
list 1;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

Encoding Recursion with Fold

\# let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> a list = <fun>
Base Case
Operation Recursive Call
\# let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
\# append $[1 ; 2 ; 3][4 ; 5 ; 6] ;$;

- : int list = [1; 2; 3; 4; 5; 6]

Question

let rec length I =
match I with [] -> 0
| (a :: bs) -> 1 + length bs
How do you write length with fold_right, but no explicit recursion?

$$
\begin{gathered}
\text { let length } l=\text { fold_right }\left(\begin{array}{l}
\text { fum } h \rightarrow f_{m} r \\
l \\
l
\end{array}\right) \\
\ell
\end{gathered}
$$

let length list =
List.fold_right (fun x -> fun n -> $n+1$) list 0

What about map?
let rec map f list $=$ match list with [] -> []

$$
\mid(\mathrm{h}:: \mathrm{t})->(\mathrm{f} \mathrm{~h})::(\operatorname{map} \mathrm{ft}) ; ;
$$

let map f list $=$ fun $r \rightarrow(f h):: r)$ list
[]

Map from Fold

\# let map f list =
fold_right (fun x-> fun y -> fx:: y) list [];; val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map ((+)1) [1;2;3];;

- : int list = [2; 3; 4]
- Can you write fold_right (or fold_left) with just map? How, or why not?

Iterating over lists: fold_left
let prod list =
let rec prod_aux ac= $=$

$\mid(y::$ rest) -> prod_aux rest (acc *y)
in prod_aux list $1 ;$
let sum list =
let rec sum_aux ac =

in sum_aux list 0 ;;

$=$ match list wits

$$
[] \rightarrow a
$$

$\mid y:$ vest \rightarrow
fold -left f (f a y) rest

Iterating over lists: fold_left

\# let rec fold_left falist =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit $=()$

Encoding Tail Recursion with fold_left

\# let prod list = let rec prod_aux I acc = match I with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list-1;;
val prod : int list $->$ int $=$ <fun>

\# let prod list =
List.fold_left (fun acc y -> acc * y) 1 list;; val prod: int list -> int $=$ <fun>
\# prod [4;5;6];;

- : int =120

Question

let length I =
let rec length_aux list $\mathrm{n}=$
match list with [] -> n
| (a :: bs) -> length_aux bs ($\mathrm{n}+1$)
in length_aux I 0

- How do you write length with fold_left, but no explicit recursion?

$$
\text { let length } l=\text { fold-tat }
$$

$$
\text { fum ac } \rightarrow \text { fum } h \rightarrow(1+a c c)
$$

$$
\begin{aligned}
& 0 \\
& l
\end{aligned}
$$

let length list = List.fold_left (fun n -> fun $x->n+1$) 0 list

Folding

\# let rec fold_left falist = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left fa $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $\mathrm{b}=$ match list with [] -> b | (x :: xs) -> f x (fold_right f xs b);; val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

Recall

\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Tail Recursion - Example

 match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

Comparison

- poor_rev $[1,2,3]=$
- (poor_rev [2,3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3,2] @ [1] =
- $3::([2]$ @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux $[2,3][1]=$
- rev_aux [3] $[2,1]=$
- rev_aux [] [3,2,1] = [3,2,1]

Folding - Tail Recursion

- \# let rev list =
fold_left

$$
\begin{aligned}
& \text { (fum acc } \rightarrow \operatorname{fin} h \rightarrow \text { hoc) } \\
& {[]} \\
& \text { list }
\end{aligned}
$$

Folding - Tail Recursion

- \# let rev list =
- fold_left

(fun I -> fun x -> x :: I) //comb op

list

```
/* Link list node */
struct Node
{ int data; struct Node* next; };
/* Function to reverse the linked list */
static void reverse(struct Node** head_ref)
{
    struct Node* prev = NULL;
    struct Node* current = *head_ref;
    struct Node* next;
    while (current != NULL)
    { next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    }
    *head_ref = prev;
```

1

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Recursion on trees: hard for tail recursion

Continuation Passing Style

- A programming technique for all forms of "nonlocal" control flow:
- non-local jumps
- exceptions

- general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO
- Tail-recursion on acid

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

