
9/18/2018 1

Programming Languages and Compilers
(CS 421)

#5: Recursion, lists, forward/head rec, tail rec, maps
#6: Higher-order recursion, fold left/right, intro to CPS

Madhusudan Parthasarathy
http://courses.engr.illinois.edu/cs421

Based on slides by Elsa Gunter, which in turn is partly
based on slides by Mattox Beckman, as updated by
Vikram Adve and Gul Agha

9/18/2018 2

Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

“rec” keyword needed in Ocaml for recursive function
declarations

9/18/2018 3

Recursion Example
Compute n2 recursively using:

n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)

match n (* pattern matching for cases *)

with 0 -> 0 (* base case *)

| n -> (2 * n -1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

9/18/2018 4

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

For termination:
 Base case is the last case; it stops the computation
 Recursive call must be to arguments that are somehow

smaller - must progress to base case
 if or match must contain base case

Failure of these may cause failure of termination

9/18/2018 5

Lists

 First example of a recursive datatype (aka algebraic
datatype)

 Unlike tuples, lists are homogeneous in type (all elements
same type)

9/18/2018 6

Lists

 List can take one of two forms:
 Empty list, written []
 Non-empty list, written x :: xs

 x is head element, xs is tail list, :: called
“cons”

 Syntactic sugar: [x] == x :: []
 [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/18/2018 7

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;
- : bool = true

fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

9/18/2018 8

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:
let bad_list = [1; 3.2; 7];;

^^^
This expression has type float but is here used with type int

9/18/2018 9

Question

 Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

9/18/2018 10

Answer

 Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

 3 is invalid because of last pair

9/18/2018 11

Functions Over Lists

let rec double_up list =
match list
with [] -> [] (* pattern before ->,expression after *)

| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]

9/18/2018 12

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

 Problem: write code for the length of the list
 How to start?

let length l =

9/18/2018 13

Question: Length of list

 Problem: write code for the length of the list
 What result do we given when the list is empty?

What result do we give when it is not empty?

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

9/18/2018 14

Same Length

 How can we efficiently answer if two lists have the same
length?

9/18/2018 15

Same Length

 How can we efficiently answer if two lists have the same
length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/18/2018 16

9/18/2018 17

Structural Recursion

 “Everything is a tree”
 Lists as terms/trees; recursion on terms/trees
 Algebraic datatypes

9/18/2018 18

Structural Recursion

 Functions on recursive datatypes (e.g. lists) tend to
be recursive

 Recursion over recursive datatypes generally by
structural recursion
 Recursive calls made to components of structure of the

same recursive type
 Base cases of recursive types stop the recursion of the

function

9/18/2018 19

Structural Recursion : List Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4

 Nil case [] is base case
 Cons case recurses on component list xs

9/18/2018 20

Forward/head Recursion

 In Structural Recursion, split input into components and
(eventually) recurse on components, and compute based
on their results

 Forward Recursion form of Structural Recursion

 In forward recursion, first call the function recursively on all
recursive components, and then build final result from
partial results

 Wait until all substructures has been worked on before
building answer

9/18/2018 21

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let pr = poor_rev xs in pr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Question

 How do you write length with forward
recursion?

let rec length l =

9/18/2018 22

Question

 How do you write length with forward
recursion?

let rec length l =
match l with [] ->
| (a :: bs) ->

9/18/2018 23

Question

 How do you write length with forward
recursion?

let rec length l =
match l with [] ->
| (a :: bs) -> 1 + length bs

9/18/2018 24

Question

 How do you write length with forward
recursion?

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

9/18/2018 25

Your turn now

Try Problem 2 on ML2

9/18/2018 26

9/18/2018 27

Aggregation

Compute the product of the numbers in a list:

Version 1:

9/18/2018 28

Aggregation

Compute the product of the numbers in a list:

Version 1:

let rec prod l =
match l with [] -> 1
| (x :: rem) -> x * prod rem;;

val prod : int list -> int = <fun>

9/18/2018 29

Aggregation

Compute the product of the numbers in a list:

Version 2:

9/18/2018 30

Aggregation

Compute the product of the numbers in a list:

Version 2:

let prod list =
let rec prod_aux l acc =

match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;
val prod : int list -> int = <fun>

Difference between the two versions

prod([5;4;9;11])
Version 1:

5*prod([4;9;11]=5*(4*prod([9;11]))
= 5*(4*(9*prod([11]))) = 5*(4*(9*(11*prod([]))))
= 5*(4*(9*(11*1)))

Version 2:
prod_aux([5;4;9;11], 1)
= prod_aux([4;9;11], 1*5)
= prod_aux([9;11], (1*5)*4)
= prod_aux([11], ((1*5)*4)*9)
= prod_aux([], (((1*5)*4)*9)*11) = (((1*5)*4)*9)*11

9/18/2018 31

9/18/2018 32

Normal
call

h

g

f

…

An Important Optimization

 When a function call is made, the
return address needs to be saved
to the stack so we know to where
to return when the call is finished

 What if f calls g and g calls h, but
calling h is the last thing g does (a
tail call)?

 Then h can return directly to f
instead of g

9/18/2018 33

Tail Recursion

 A recursive program is tail recursive if all recursive
calls are tail calls

 Tail recursive programs may be optimized to be
implemented as (while) loops, thus removing the
function call overhead for the recursive calls

 Tail recursion generally requires extra
“accumulator” arguments to pass partial results
 May require an auxiliary function

Question

 How do you write length with tail recursion?

let length l =
let rec length_aux list n =

in

9/18/2018 34

Question

 How do you write length with tail recursion?

let length l =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

9/18/2018 35

Your turn now

Try Problem 4 on MP2

9/18/2018 36

9/18/2018 37

Mapping Recursion

 One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with [] -> []
| x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;
- : int list = [4; 6; 8]

38

Mapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/18/2018 39

Mapping Recursion

 Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;
- : int list = [4; 6; 8]

 Same function, but no rec

Your turn now

Write a function
make_app : ((‘a -> ‘b) * ‘a) list -> ‘b list

that takes a list of function – input pairs and gives
the result of applying each function to its argument.
Use map, no explicit recursion.

let make_app l =

9/18/2018 40

9/18/2018 41

Folding Recursion

 Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
 Computes (2 * (4 * (6 * 1)))

9/18/2018 42

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
[] -> 0 | x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
[] -> 1 | x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

9/18/2018 43

Folding Functions over Lists

How are the following functions similar?
let rec sumList list = match list with
[] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
sumList [2;3;4];;
- : int = 9
let rec multList list = match list with
[] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24

Base Case

9/18/2018 44

Folding Functions over Lists

How are the following functions similar?
let rec sumList list = match list with
[] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
sumList [2;3;4];;
- : int = 9
let rec multList list = match list with
[] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24

Recursive Call

9/18/2018 45

Folding Functions over Lists

How are the following functions similar?
let rec sumList list = match list with
[] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
sumList [2;3;4];;
- : int = 9
let rec multList list = match list with
[] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24

Head Element

9/18/2018 46

Folding Functions over Lists

How are the following functions similar?
let rec sumList list = match list with
[] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
sumList [2;3;4];;
- : int = 9
let rec multList list = match list with
[] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24

Combining Operation

9/18/2018 47

Folding Functions over Lists

How are the following functions similar?
let rec sumList list = match list with
[] -> 0 | x::xs -> x + sumList xs;;

val sumList : int list -> int = <fun>
sumList [2;3;4];;
- : int = 9
let rec multList list = match list with
[] -> 1 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;3;4];;
- : int = 24R

Rec value

Rec value

Combining Operation

fold_right

9/18/2018 48

9/18/2018 49

Recursing over lists: fold_right

let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

The Primitive
Recursion Fairy

50

Folding Recursion

 multList folds to the right
 Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>

multList [2;4;6];;
- : int = 48

What about append?

9/18/2018 51

9/18/2018 52

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

Question

let rec length l =
match l with [] -> 0
| (a :: bs) -> 1 + length bs

How do you write length with fold_right, but no
explicit recursion?

53

let length list =
List.fold_right (fun x -> fun n -> n + 1) list 0

What about map?

let rec map f list = match list with [] -> []
| (h::t) -> (f h) :: (map f t);;

54

9/18/2018 55

Map from Fold

let map f list =
fold_right (fun x -> fun y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]

 Can you write fold_right (or fold_left) with just
map? How, or why not?

9/18/2018 56

Iterating over lists: fold_left

let prod list =
let rec prod_aux l acc =
match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;

let sum list =
let rec sum_aux l acc =
match l with [] -> acc
| (y :: rest) -> sum_aux rest (acc + y)

in sum_aux list 0;;

9/18/2018 57

Iterating over lists: fold_left

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

9/18/2018 58

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =
match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list 1;;

val prod : int list -> int = <fun>
Init Acc Value Recursive Call Operation

let prod list =
List.fold_left (fun acc y -> acc * y) 1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;
- : int =120

Question

let length l =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0
 How do you write length with fold_left, but no explicit

recursion?

59
let length list = List.fold_left (fun n -> fun x -> n + 1) 0 list

9/18/2018 60

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/18/2018 61

Recall

let rec poor_rev list = match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

 What is its running time?

9/18/2018 62

Quadratic Time

 Each step of the recursion takes time
proportional to input

 Each step of the recursion makes only one
recursive call.

 List example:
let rec poor_rev list = match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/18/2018 63

Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

 What is its running time?

9/18/2018 64

Comparison

 poor_rev [1,2,3] =
 (poor_rev [2,3]) @ [1] =
 ((poor_rev [3]) @ [2]) @ [1] =
 (((poor_rev []) @ [3]) @ [2]) @ [1] =
 (([] @ [3]) @ [2]) @ [1]) =
 ([3] @ [2]) @ [1] =
 (3:: ([] @ [2])) @ [1] =
 [3,2] @ [1] =
 3 :: ([2] @ [1]) =
 3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/18/2018 65

Comparison

 rev [1,2,3] =
 rev_aux [1,2,3] [] =
 rev_aux [2,3] [1] =
 rev_aux [3] [2,1] =
 rev_aux [] [3,2,1] = [3,2,1]

9/18/2018 66

Folding - Tail Recursion

- # let rev list =
- fold_left
-

9/18/2018 67

Folding - Tail Recursion

- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l) //comb op

[] //accumulator cell
list /* Link list node */

struct Node
{ int data; struct Node* next; };

/* Function to reverse the linked list */
static void reverse(struct Node** head_ref)
{
struct Node* prev = NULL;
struct Node* current = *head_ref;
struct Node* next;
while (current != NULL)
{ next = current‐>next;
current‐>next = prev;
prev = current;
current = next;

}
*head_ref = prev;

}

9/18/2018 68

Folding

 Can replace recursion by fold_right in any forward
primitive recursive definition
 Primitive recursive means it only recurses on immediate

subcomponents of recursive data structure

 Can replace recursion by fold_left in any tail
primitive recursive definition

Recursion on trees: hard for tail
recursion

9/18/2018 69

9/18/2018 70

Continuation Passing Style

 A programming technique for all forms of “non-
local” control flow:
 non-local jumps
 exceptions
 general conversion of non-tail calls to tail calls

 Essentially it’s a higher-order function version of
GOTO

 Tail-recursion on acid

71

Continuations

 Idea: Use functions to represent the control flow of
a program

 Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns” no result

 Function receiving the result called a continuation

 Continuation acts as “accumulator” for work still to
be done

