
1

Programming Languages and Compilers
(CS 421)

#7: Continuations and Continuation Passing Style (CPS)
#6: Continuation Passing Style transformation, modeling

exceptions

Madhusudan Parthasarathy

Based on slides by Elsa Gunter,
in turn partly based on slides by
Mattox Beckman, Vikram Adve
and Gul Agha

9/27/2018 2

Continuation Passing Style

 A programming technique for all forms of “non-
local” control flow:
 non-local jumps
 exceptions
 general conversion of non-tail calls to tail calls

 Essentially it’s a higher-order function version of
GOTO

 Tail-recursion on acid

3

Continuations

 Idea: Use functions to represent the control flow of
a program

 Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns” no result

 Function receiving the result called a continuation

 Continuation acts as “accumulator” for work still to
be done

9/27/2018 4

Continuation Passing Style

 Writing procedures such that all procedure calls
take a continuation to which to give (pass) the
result, and return no result, is called continuation
passing style (CPS)

 Note: All functions must be in CPS form.

9/27/2018 5

Continuation Passing Style

 A compilation technique to implement non-local
control flow, especially useful in interpreters.

 A formalization of non-local control flow in
denotational semantics

 Possible intermediate state in compiling functional
code

Why CPS?

 Makes order of evaluation explicitly clear
 Allocates variables (to become registers) for each

step of computation
 Essentially converts functional programs into

imperative ones
 Major step for compiling to assembly or byte

code
 Tail recursion easily identified
 Strict forward recursion converted to tail recursion

 At the expense of building large closures in heap

9/27/2018 6

Other Uses for Continuations

 CPS designed to preserve order of
evaluation

 Continuations used to express order of
evaluation

 Can be used to change order of evaluation
 Implements:

 Exceptions and exception handling
 Co-routines
 (pseudo, aka green) threads

9/27/2018 7

Back to recursion and tail-recursion

Compute the product of the numbers in a list:

Not tail recursive:

let rec prod l =
match l with [] -> 1
| (x :: rem) -> x * prod rem;;

val prod : int list -> int = <fun>

Tail recursive:
let prod list =

let rec prod_aux l acc =
match l with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;
val prod : int list -> int = <fun>

8

Key idea:
Do work that you have to do
after the function call before
you call the function,
and have an accumulator
hold the computed values.

Associativity is crucial.

Doesn’t work in general.

Back to recursion and tail-recursion

How do we write the following in a way that is
syntactically tail-recursive?

let crazy list = match list with [] -> 0
| (h::t) -> ((crazy t) + h + 2) * 3

crazy [4;5;9];;
- : int = 378

9

Back to recursion and tail-recursion

How do we write the following in a way that is
syntactically tail-recursive?

let crazy list = match list with [] -> 0
| (h::t) -> ((crazy t) + h + 2) * 3

crazy [4;5;9];;
- : int = 378

let rec crazyk list k = match list with [] -> k 0
| (h::t) -> crazyk t (fun r -> k ((r + h + 2) * 3))

let justret x = x
crazyk [4;5;9] justret;;
- : int = 378

10

 Transformed version is tail-recursive, syntactically.
 But not efficient!
 Evaluates the same function the same way…

 The continuation encodes the ``stack’’

crazyk [4;5] justret
= crazyk [5] (fun r -> justret ((r + 4 + 2) * 3))
= crazyk [] (fun r -> (fun r -> justret ((r + 4 + 2) * 3))

((r + 5 + 2) * 3))
= (fun r -> (fun r -> justret ((r + 4 + 2) * 3))

((r + 5 + 2) * 3)) 0
= (fun r -> justret ((r + 4 + 2) * 3)) 21
= 81

11

Now, let’s do this so that we do only *one*
small piece of work.

Function can either:
- do some primitive function
- or call another function with a continuation

9/27/2018 12

9/27/2018 13

Example

 Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

 Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Simple Functions Taking Continuations

 Given a primitive operation, can convert it to
pass its result forward to a continuation

 Examples:
let subk (x, y) k = k(x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/27/2018 14

Your turn now

Try Problem 7 on MP2
Try consk

9/27/2018 15

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

9/27/2018 16

add_three: a different order

 # let add_triple (x, y, z) = x + (y + z);;
 How do we write add_triple_k to use a

different order?

 let add_triple_k (x, y, z) k =

9/27/2018 17

Your turn now

Try Problem 8 on MP4

9/27/2018 18

9/27/2018 19

Conditionals

let not5 x = if (x = 5) then 0 else x

9/27/2018 20

Conditionals

let not5 x = if (x = 5) then 0 else x

let not5k x k =
eqk (x,5) (fun r -> if r then k 0 else k x)

9/27/2018 21

Recursive Functions

 Recall:
let rec factorial n =

if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

9/27/2018 22

Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else let s = n – 1 in (* Second computation *)

let r = factorial s in (* Third computation *)
n * r in (* Returned value *) ;;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/27/2018 23

Recursive Functions

let rec factorialk n k =
eqk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> int = <fun>
factorialk 5 report;;
120
- : unit = ()

9/27/2018 24

Recursive Functions

 To make recursive call, must build
intermediate continuation to
 take recursive value: r
 build it to final result: n * r
 And pass it to final continuation:
 times (n, r) k = k (n * r)

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

9/27/2018 25

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?
let rec length list = match list with [] -> 0

| (a :: bs) -> let r1 = length bs in 1 + r1

9/27/2018 26

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1

What is the CSP version of this?

9/27/2018 27

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1;

What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0

| x :: xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- : unit = ()
9/27/2018 28

Your turn now

Try Problem 12 on MP2

9/27/2018 29

CPS for Higher Order Functions

 In CPS, every procedure / function takes a
continuation to receive its result

 Procedures passed as arguments take
continuations

 Procedures returned as results take
continuations

 CPS version of higher-order functions must
expect input procedures to take
continuations

9/27/2018 30

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) * 'a list -> bool = <fun>
 What is the CPS version of this?

9/27/2018 31

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k =

9/27/2018 32

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> true

9/27/2018 33

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true

9/27/2018 34

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/27/2018 35

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/27/2018 36

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/27/2018 37

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
 What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk (pk, xs) k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

9/27/2018 38

9/27/2018 39

Terms

 A function is in Direct Style when it returns its
result back to the caller.

 A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

 A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

 Instead of returning the result to the caller, we
pass it forward to another function.

9/27/2018 40

Terminology

 Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
 if (x>3) then x + 2 else x - 4
 let x = 5 in x + 4

 Tail Call: A function call that occurs in
tail position
 if (h x) then f x else (x + g x)

9/27/2018 41

Terminology

 Available: A function call that can be
executed by the current expression

 The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
 if (h x) then f x else (x + g x)
 if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/27/2018 42

CPS Transformation

 Step 1: Add continuation argument to any function
definition:
 let f arg = e  let f arg k = e
 Idea: Every function takes an extra parameter

saying where the result goes
 Step 2: A simple expression in tail position should

be passed to a continuation instead of returned:
 return a  k a
 Assuming a is a constant or variable.
 “Simple” = “No available function calls.”

9/27/2018 43

CPS Transformation

 Step 3: Pass the current continuation to every
function call in tail position
 return f arg  f arg k
 The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

 Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)
 return op (f arg)  f arg (fun r -> k(op r))
 op represents a primitive operation

 return f(g arg)  g arg (fun r-> f r k)

9/27/2018 44

9/27/2018 45

Example

Before:
let rec add_list lst =
match lst with
[] -> 0

| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =

(* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k

(* rule 3 *)
| x :: xs -> add_listk xs

(fun r -> k ((+) x r));;
(* rule 4 *)

9/27/2018 46

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

9/27/2018 47

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;

9/27/2018 48

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

9/27/2018 49

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20
- : unit = ()

Other Uses for Continuations

 CPS designed to preserve order of
evaluation

 Continuations used to express order of
evaluation

 Can be used to change order of evaluation
 Implements:

 Exceptions and exception handling
 Co-routines
 (pseudo, aka green) threads

9/27/2018 50

9/27/2018 51

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =

match list with [] -> 1
| x :: xs ->
if x = 0 then raise Zero

else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/27/2018 52

Exceptions - Example

let list_mult list =
try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

9/27/2018 53

Exceptions

 When an exception is raised
 The current computation is aborted
 Control is “thrown” back up the call
stack until a matching handler is
found

 All the intermediate calls waiting for a
return values are thrown away

9/27/2018 54

Implementing Exceptions

let multkp (m, n) k =
let r = m * n in
(print_string "product result: ";
print_int r; print_string "\n";
k r);;

val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

9/27/2018 55

Implementing Exceptions

let rec list_multk_aux list k kexcp =
match list with [] -> k 1
| x :: xs -> if x = 0 then kexcp 0
else list_multk_aux xs

(fun r -> multkp (x, r) k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/27/2018 56

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

