Programming Languages and Compilers
(CS 421)

#7: Continuations and Continuation Passing Style (CPS)
#6: Continuation Passing Style transformation, modeling

exceptions

Madhusudan Parthasarathy

Based on slides by Elsa Gunter,
in turn partly based on slides by
Mattox Beckman, Vikram Adve
and Gul Agha

i Continuation Passing Style

= A programming technique for all forms of ‘;QQvn;

local” control flow: v OF 5.
= non-local jumps){ NS
= exceptions €, €L

= general conversion of non-tail calls to tail calls

= Essentially it’ s a higher-order function version of
GOTO

n /all-recursion on acid

9/27/2018

i Continuations

= Idea: Use functions to represent the control flow of
a program

= Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns” no result

= Function receiving the result called a continuation

= Continuation acts as “accumulator” for work still to
be done

3

i Continuation Passing Style

= Writing procedures such that all procedure calls
take a continuation to which to give (pass) the
result, and return no result, is called continuation
passing style (CPS)

= Note: All functions must be in CPS form.

9/27/2018

i Continuation Passing Style

= A compilation technique to implement non-local
control flow, especially useful in interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling functional
code

9/27/2018 5

i Why CPS?

= Makes order of evaluation explicitly clear

= Allocates variables (to become registers) for each
step of computation

= Essentially converts functional programs into
Imperative ones

= Major step for compiling to assembly or byte
code

= Tail recursion easily identified

= Strict forward recursion converted to tail recursion
= At the expense of building large closures in heap

9/27/2018 6

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= Exceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

9/27/2018

Back to recursion and tail-recursion

Compute the product of the numbers in a list:

Not tail recursive:

R Key idea:

let rec prod | = Do work that you have to do
match | with [] -> 1 T after the function call before
| (X :: rem) -> x * prod rem;; you call the function,

val prod : int list -> int = <fun> and have an accumulator

hold the computed values.

Tail recursive: Associativity is crucial.

let prod list =
let rec prod_aux | acc = Doesn’t work in general.

match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list 1;;
val prod : int list -> int = <fun>

‘L Back to recursion and tail-recursion

How do we write the following in a way that is
syntactically tail-recursive?

let crazy list = match list with [] -> 0
| (h::t) -> ((crazy t) + h + 2) * 3

Lisk K
crazy [4;5;9];; \d CYN}t) Y\ vt
- int = 378 _ qgndon U

\k\n'ﬁ-” —7 UR@T& .)k&&kﬂf)*}))

| Lt (o)

00 J\l(

i Back to recursion and tail-recursion

How do we write the following in a way that is
syntactically tail-recursive?

let crazy list = match list with [] -> 0
| (h::t) -> ((crazy t) + h + 2) * 3

crazy [4;5;9];;
:int = 378

let rec crazyk list k = match list with [] -> k 0
| (h::t) -> crazyk t (funr->k ((r + h + 2) * 3))
let justret x = x
crazyk [4;5;9] justret;;
- . int = 378

10

= Transformed version is tail-recursive, syntactically.
= But not efficient!
= Evaluates the same function the same way...

= The continuation encodes the * " stack”

crazyk [4;5] justret

= crazyk [5] (fun r -> justret ((r + 4 + 2) * 3))

= crazyk [] (funr-> (fun r -> justret ((r + 4 + 2) * 3))
((r+5+2)*3)

= (funr-> (funr ->justret ((r + 4 + 2) * 3))
(r+5+2)*3) 0

= (funr->justret (r+4 + 2) * 3)) 21

= 81

11

+

Now, let’s do this so that we do only *one*
small piece of work.

Function can either:

- do some primitive function
- or call another function with a continuation

9/27/2018

12

i Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:
let addk (a, b) k = k (a + b);;

val addk : int * int -> (int -> "a) -> "a = <fun>
addk (22, 20) report;;

42

- unit = ()

9/27/2018 13

i Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk (x, y) k = k(x - vy);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>
let egk (x, y) k = k(x =y);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (x, y) k = k(x * y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/27/2018 14

¥

Your turn now

Try Problem 7 on MP2
Try consk

i Nesting Continuations

let add_triple (%, vy, 2) :@4- Z;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,2)=letp=x+vyinp + z;;
val add_three : int -> int -> int -> int = <fun>
let add_triple_k (x, vy, z) k =
addk (x, y)|(fun p -> addk (p, z)[K]);;
val add_triple_k: int * int * int -> (int -> 'a) ->
'a = <fun>

9/27/2018 16

‘L add three: a different order

s # let add_triple (X, vy, 2) = X + (y + 2);;

= How do we write add_triple_k to use a
different order?

add A\ (Y,j,z} = ﬁet E’j; A);\3
= let add_triple_k (X, y, z) |ﬁ=/ \1
adak (‘j,%)d:w P —> aM\i(\‘,\’) ¥ I |

9/27/2018 17

¥

Your turn now

Try Problem 8 on MP4

i Conditionals

let not5 x = if (x = 5) then 0 else x
Dot vot§ A = Jer b= (x=5) =

9/27/2018)

i Conditionals

let notb x = if (x = 5) then 0 else x

let notSk x k =
egk (x,5) (fun r -> if r then k 0 else k x)

9/27/2018

20

i Recursive Functions

= Recall:

let rec factorial n =
-then 1 else n* * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120

9/27/2018 21

i Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
elselets = n—1 in (* Second computation *)
let r = factorial s in (* Third computation *)
n * rin (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;) we fw\“““& h ‘f? W YA 1
S1int =120 gk (a) Awe b7

9/27/2018 22

i Recursive Functions ox 9.*

e

let rec factorialk n k =
egk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> int = <fun>

factorialk 5 report;;

120

- 1 unit = ()

9/27/2018 23

i Recursive Functions

= TO make recursive call, must build
intermediate continuation to

= take recursive value: r
= build it to final result: n * r

=« And pass it to final continuation:

» times(n,r)k=k(n *r)

9/27/2018

24

i Example: CPS for length

let rec length list = match list with [] -> 0
| (@ :: bs)->1 + length bs
What is the Iet—exparkded version of this?

J oy W\%M/\’/g' \

o\
\Q\,(-\“SQW%/'){)\{\
It (m\tk'
L Vs
CW }M /-79“()&“ : K/
v

9/27/2018

25

i Example: CPS for length

let rec length list = match list with [] -> 0
| (@ :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list = match list with [] -> 0
| (@ ::bs)->letrl =lengthbsin1 +rl

9/27/2018 26

i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@ ::bs)->letrl =lengthbsin1 +rl
What is the CSP version of this?

9/27/2018

27

i Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1 + ri;
What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0
| X i xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- unit = ()

9/27/2018 28

¥

Your turn now

Try Problem 12 on MP2

i CPS for Higher Order Functions

= In CPS, every procedure / function takes a
continuation to receive its result

= Procedures passed as arguments take
continuations

s Procedures returned as results take
continuations

= CPS version of higher-order functions must
expect input procedures to take
continuations

9/27/2018

30

i Example: all g4r 95> =n = ">5

#let rec all (p, 1) = match | with [] ->Ktrue
| (x:rxs)->letb=pxin_
Cf b then all (p, xs) else(false=

val all : ('a -> bool) * 'a list -> bool = <fun>

= What is the CPS version of this? o I Ae
Wr al @k,l) K = 4wk L] A

| (xuxs) 7 Pﬁ: b%b _ZMK (pt,¥) K

ele K %‘M

9/27/2018 31

i Example: all (

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k =

9/27/2018 32

i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> true

9/27/2018 33

i Example: all

#let rec all (p, I) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true

9/27/2018 34

i Example: all

#let rec all (p, |) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (X 11 XS) ->

9/27/2018 35

i Example: all

#let rec all (p, |) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (X 11 XS) -> pk x

9/27/2018 36

i Example: all

#let rec all (p, |) = match | with [] -> true

| (X ::xs)->letb =pxin

if b then all (p, xs) else false

val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (X 11 XS) -> pk x

) (fun b -> if b then else

9/27/2018 37

i Example: all

#let rec all (p, |) = match | with [] -> true
| (X ::xs)->letb =pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (X 11 XS) -> pk x
(fun b -> if b then allk (pk, xs) k else k

false)

val allkk : (‘a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

9/27/2018 38

i Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

= A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

= Instead of returning the result to the caller, we
pass it forward to another function.

9/27/2018 39

i Terminology

= Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e

= if (x>3) ther| x + 2|else| x - 4

sletx=5in|x+ 4
= Tail Call: A function call that occurs in

tail position

= if (h X) then|f x| else|(x + g X)

9/27/2018

i Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).

= if (h x)\twen f x|else|(x +]g x‘}
- iftwen (fun x -> f x) else[(g (x + X))

Not available

9/27/2018 41

i CPS Transformation

= Step 1: Add continuation argument to any function
definition:
s letfarg=e = letfargk=¢e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

» return a = k a
= Assuming a is a constant or variable.
= “Simple” = “No available function calls.”

9/27/2018 42

i CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

= return farg = farg k

= The function “isn’ t going to return,” so we need
to tell it where to put the result.

9/27/2018 43

i CPS Transformation

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

= return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

= return f(g arg) = g arg (fun r-> f r k)

9/27/2018 44

i Example

Before: After:
let rec add list Ist = let rec add_listk Ist k =
y (* rule 1 *)
match Ist with match Ist with
[1->0 | [1->kO (*rule2*)
| 0 :: xs -> add_list xs |0 ::xs->add_listk xs k
| X 11 Xs -> (+) X (* rule 3 *)
(E;lad list xs);:; | X 11 xs -> add_listk xs

(funr-> Kk ((+) x1));;
(* rule 4 *)

9/27/2018 .

i CPS for sum

let rec sum list = match listwith [] -> 0
| X 11 XS -> X + sum XS ;;
val sum : int list -> int = <fun>

9/27/2018

46

i CPS for sum

let rec sum list = match listwith [] -> 0
| X 11 XS -> X + sum XS ;;

val sum : int list -> int = <fun>

let rec sum list = match listwith [] -> 0
| X ;i xs->letrl =sumxs inx +rl;;

9/27/2018

47

i CPS for sum

let rec sum list = match listwith [] -> 0
| X 11 XS -> X + sum XS ;;
val sum : int list -> int = <fun>
let rec sum list = match listwith [] -> 0
| X ;i xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
let rec sumk list kK = match list with [] -> k O
| X 12 xs -> sumk xs (fun rl -> addk x r1 k);;

9/27/2018

48

i CPS for sum

let rec sum list = match listwith [] -> 0
| X 11 XS -> X + sum XS ;;
val sum : int list -> int = <fun>
let rec sum list = match listwith [] -> 0
| X ;i xs->letrl =sumxs inx +rl;;
val sum : int list -> int = <fun>
let rec sumk list kK = match list with [] -> k O
| X 12 xs ->sumk xs (fun rl -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20

- unit = ()
9/27/2018

49

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= Exceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

9/27/2018

50

i Exceptions - Example

Zero;;
exception Zero
let rec list_mult_aux list =

match list with [] -> 1

| X i1 XS ->

if x = 0 then Zero

else x * list_mult_aux xs;;

val list mult_aux : int list -> int = <fun>

9/27/2018

51

i Exceptions - Example

let list._ mult list =

list_mult_aux list Zero
val list mult : int list -> int = <fun>
list_ mult [3;4;2];;

-:int = 24
list._mult [7:4:0];;
-:int=0

list_mult_aux [7;4,0];;
Exception: Zero.

9/27/2018

0;;

52

i Exceptions

= When an exception is raised
= The current computation is aborted

= Control is “thrown” back up the call
stack until a matching handler is
found

= All the intermediate calls waiting for a
return values are thrown away

9/27/2018 53

i Implementing Exceptions

let multkp (m, n) k =
letr =m *nin
(print_string "product result: ";
print_int r; print_string "\n";
Kr);;
val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

9/27/2018 54

i Implementing Exceptions

let rec list_multk_aux list k kexcp =

match list with [] -> k 1

| X i xs->if x =0then kexcp O

else list_multk_aux xs
(fun r -> multkp (x, r) k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/27/2018 55

i Implementing Exceptions

list_multk [3;4;2] report;;
product result:
product result:
product result:
24

- unit = ()

list_multk [7;4;0] report;;
0

- unit = ()

N CO N

4

9/27/2018 56

