
9/25/2018 1

Programming Languages and Compilers
(CS 421)

#9 and #10: Algebraic datatypes; disjoint union types,
product types, recursive datatypes

Madhusudan Parthasarathy
http://courses.engr.illinois.edu/cs421

Based on slides by Elsa Gunter, which in turn is partly
based on slides by Mattox Beckman, as updated by
Vikram Adve and Gul Agha

Midterm

 Midterm from Oct 2 – Oct 4
 CBTF
 Topics: All topics covered till Thu Sep 20,

which includes writing functions in CPS form

 Mostly all that you have done (WAs, MPs, MLs),
but will include extra questions

 More details on Piazza soon, including practice
exam.

9/25/2018 2

Midterm

Studying for this exam

 Understand the lecture slides and discussions thoroughly.
 Revisit the MPs, MLs and WAs and make sure you understand the

solutions thoroughly. Repeat any you are not comfortable with.
 Take the pdf sample exam as a thorough overview for the actual

exam.
 Take the PrairieLearn Midterm1 Practice to be familiar with the

precise nature of the questions and to see where you may have trouble
taking the test in a timely enough manner.

9/27/2018 3

Midterm

Syllabus: First 8 lectures (till Sep 20);
all videos are online at echo360.org; slides are up to date

Basic OCaml
 Know the basic constructs (e.g., match, fun, let, let rec) like the back of your

hand.
 Be able to determine the type of OCaml expressions
 Be able to evaluate OCaml expressions, both intuitively, and and step by step

followong the steps discussed in class
 Be able to describe the environment that results from a sequence of

declarations
 Be able to describe the closure that is the result of evalutating a function

declaration
 Understand what effect sequencing, function application and lambda lifting has

on the order of evaluation of expressions

9/27/2018 4

Midterm

Recursion
 Be able to write recursive functions, including (but not necessarily limited to)

tail-recursive or forward recursive.
 Be able to recognize whether a function is tail-recursive, and when a recursive

call is in tail call position

Higher Order Functions (HOFs)
 Be able to write the definitions of the common HOFs.
 Be able to use map and fold to implement other functions, as in ML2.
 Be able to write functions that use other functions as arguments
 Continuations and Continuation Passing Style
 Understand what the basic idea of what a continuation is.
 Be able rewrite an operation / procedure in direct style to take a continuation to

which to pass its results, while preserving the order of evaluation.
 Be able to put a complex, possibly recursive procedure into full continutation

passing style, while preserving the order of evaluation.

5

Data type in Ocaml: lists

 Frequently used lists in recursive program
 Matched over two structural cases

 [] - the empty list
 (x :: xs) a non-empty list

 Covers all possible lists
 type ‘a list = [] | (::) of ‘a * ‘a list

 Not quite legitimate declaration because of
special syntax

9/25/2018 6

9/25/2018 7

Variants - Syntax (slightly simplified)

 type name = C1 [of ty1] | . . . | Cn [of tyn]
 Introduce a type called name
 (fun x -> Ci x) : ty1 -> name
 Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
 Constructors are the basis of almost all

pattern matching

9/25/2018 8

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

9/25/2018 9

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

9/25/2018 10

Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;
val day_after : weekday -> weekday = <fun>

9/25/2018 11

Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday = <fun>

9/25/2018 12

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool
let is_weekend day =

9/25/2018 13

Problem:

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day =
match day with Saturday -> true
| Sunday -> true
| _ -> false

9/25/2018 14

9/25/2018 15

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp
| SndOp

9/25/2018 16

Disjoint Union Types

 Disjoint union of types, with some possibly
occurring more than once

 We can also add in some new singleton
elements

ty1 ty2 ty1

9/25/2018 17

Disjoint Union Types

type id = DriversLicense of int |
SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity of int | Name of
string

let check_id id = match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

 Create a type to represent the currencies for
US, UK, Europe and Japan

9/25/2018 18

Problem

 Create a type to represent the currencies for
US, UK, Europe and Japan

type currency =
Dollar of int

| Pound of int
| Euro of int
| Yen of int

9/25/2018 19

9/25/2018 20

Example Disjoint Union Type

type const =
BoolConst of bool

| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

9/25/2018 21

Example Disjoint Union Type

type const = BoolConst of bool
| IntConst of int | FloatConst of float
| StringConst of string | NilConst
| UnitConst

How to represent 7 as a const?
Answer: IntConst 7

9/25/2018 22

Polymorphism in Variants

 The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

 Used to encode partial functions
 Often can replace the raising of an exception

9/25/2018 23

Functions producing option

let rec first p list =
match list with [] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

9/25/2018 24

Functions over option

let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

Problem

 Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

9/25/2018 25

Problem

 Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

 let hd list =
match list with [] -> None
| (x::xs) -> Some x

 let tl list =
match list with [] -> None
| (x::xs) -> Some xs

9/25/2018 26

9/25/2018 27

Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/25/2018 28

Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

Thinking of disjoint union types

9/27/2018 29

9/25/2018 30

Recursive Types

 The type being defined may be a component
of itself

ty ty’ ty

9/25/2018 31

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/25/2018 32

Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

9/25/2018 33

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

Thinking of disjoint union types

9/27/2018 34

9/25/2018 35

Recursive Data Types

type exp =
VarExp of string

| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

Thinking of disjoint union types

9/27/2018 36

Symbolic expressions as a recursive
data type

9/27/2018 37

9/25/2018 38

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?

9/25/2018 39

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?
Answer: ConstExp (IntConst 6)

9/25/2018 40

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?

9/25/2018 41

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?
BinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3))

9/25/2018 42

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …
How to represent [(6, 3)] as an exp?
BinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

9/27/2018 43

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree)

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node (Leaf 3, Leaf 6),
Leaf (-7))

9/27/2018 44

Recursive Functions

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;

let rec first_leaf_value tree =

9/25/2018 45

Recursive Functions

let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int = <fun>

let left = first_leaf_value bin_tree;;
val left : int = 3

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
 Write sum_tree : int_Bin_Tree -> int
 Adds all ints in tree
let rec sum_tree t =

9/25/2018 46

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
 Write sum_tree : int_Bin_Tree -> int
 Adds all ints in tree

let rec sum_tree t =
match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/25/2018 47

9/25/2018 48

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

 How to count the number of occurrences of
variables in an exp?

9/25/2018 49

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

 Count the number of occurrences of variables in an exp?

let rec varCnt exp =
match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

9/25/2018 50

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

 Count the number of occurrences of variables in an exp

let rec varCnt exp =
match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

9/25/2018 51

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) ->
| Node (left_tree, right_tree) ->

9/27/2018 52

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,

ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree -> int_Bin_Tree =

<fun>

9/25/2018 53

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8), Leaf (-5))

9/25/2018 54

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree
-> 'a = <fun>

9/25/2018 55

Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

9/27/2018 56

Mutually Recursive Types

Type T1’s definition has type T2
Type T2’s definition has type T1

Example: directed trees with arbitrary arity

9/27/2018 57

Mutually Recursive Types - Values

Type T1’s definition has type T2
Type T2’s definition has type T1

Example: directed trees
with arbitrary arity

5 7

3 2

9/25/2018 58

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList

and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)

9/25/2018 59

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,

(More (TreeNode
(More (TreeLeaf 3,

Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

9/25/2018 60

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

9/25/2018 61

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

9/25/2018 62

Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [x]

| (TreeNode list) -> list_fringe list
and list_fringe tree_list =

match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

9/25/2018 63

Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]

9/25/2018 64

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

9/25/2018 65

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ ->
| TreeNode ts ->

9/25/2018 66

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

9/25/2018 67

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =

9/25/2018 68

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t ->
| More t ts’ ->

9/25/2018 69

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

9/25/2018 70

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

9/25/2018 71

Nested Recursive Types

type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree list);;
type 'a labeled_tree = TreeNode of ('a * 'a labeled_tree list)

Mindblowing!
What does this mean?
What’s the base case?!

9/25/2018 72

Nested Recursive Type Values

let ltree =
TreeNode(5,
[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);
TreeNode (5, [])]);;

9/25/2018 73

Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(5,
[TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

9/25/2018 74

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

9/25/2018 75

Nested Recursive Type Values

5

3 2 5

1 7

9/25/2018 76

Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)
-> x::flatten_tree_list treelist

and
flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees
-> flatten_tree labtree
@ flatten_tree_list labtrees;;

9/25/2018 77

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>
val flatten_tree_list : 'a labeled_tree list -> 'a list =

<fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]

Nested recursive types lead to mutually recursive
functions

9/25/2018 78

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
[1; 1; 1; 1; ...]

match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
match ones with x::_ -> x;;
^^^^^^^^^^^^^^^^^^^^^^^^^

- : int = 1

9/25/2018 79

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
and tree_list = [lab_tree; lab_tree];;

val lab_tree : int labeled_tree =
TreeNode (2, [TreeNode(...); TreeNode(...)])

val tree_list : int labeled_tree list =
[TreeNode (2, [TreeNode(...); TreeNode(...)]);
TreeNode (2, [TreeNode(...); TreeNode(...)])]

9/25/2018 80

Infinite Recursive Values

match lab_tree
with TreeNode (x, _) -> x;;

- : int = 2

9/25/2018 81

Records

 Records serve the same programming
purpose as tuples

 Provide better documentation, more
readable code

 Allow components to be accessed by label
instead of position
 Labels (aka field names must be unique)
 Fields accessed by suffix dot notation

9/25/2018 82

Record Types

 Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

 person is the type being introduced
 name, ss and age are the labels, or fields

9/25/2018 83

Record Values

 Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

9/25/2018 84

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

9/25/2018 85

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119, 73, 6244)

9/25/2018 86

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
{name = "Joseph Martins"; ss = (325, 40,
1276); age = 22}

student = teacher;;
- : bool = false

9/25/2018 87

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

9/25/2018 88

New Records from Old

let new_id name soc_sec person =
{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person
-> person = <fun>

new_id "Guieseppe Martin" (523,04,6712)
student;;

- : person = {name = "Guieseppe Martin"; ss
= (523, 4, 6712); age = 22}

