CS 423

Operating System Design:
MP3 Walkthrough

Andrew Yoo
(All content taken from a previous year's walkthrough)

CS 423: Operating Systems Design

Purpose of MP3

Understand the Linux virtual to physical page mapping
and page fault rate.

Design a lightweight tool that can profile page fault rate.

Implement the profiler tool as a Linux kernel module.

Learn how to use the kernel-level APIs for character
devices, vmalloc(), and mmap().

CS5423: Operating Systems Design 2

Introduction

« Performance gap between memory and disk
— Registers: ~1ns
— DRAM: 50-150ns
— Disk: ~10ms, hundreds times slower than memory!

« Performance of the virtual memory system plays a major
role in the overall performance of the Operating System

 Inefficient VM replacement of pages

— Bad performance for user-level programs
— Increasing the response time
— Lowering the throughput

CS5423: Operating Systems Design 3

Page Fault

« Page Fault is a trap to the software raised by the
hardware when:

— A program accesses a page that is mapped in the Virtual
address space but not loaded in the Physical memory

* In general, OS tries to handle the page fault by bringing
the required page into physical memory.

 The hardware that detects a Page Fault is the Memory
Management Unit of the processor

 However, if there is an exception (e.g. illegal access like
accessing null pointer) that needs to be handled, OS

takes care of that

CS5423: Operating Systems Design 4

Page Fault

« Major page fault
— Handled by using a disk I/O operation
— Memory mapped file
— Page replacement/ Cold Pages
— Expensiveas they add to disk latency

* Minor page fault
— Handled without using a disk 1/O operation
— malloc(), copy_on_write(), fork()

CS5423: Operating Systems Design 5

Effect of Page Fault on System

Performance

 Major Page Fault are much more expensive. How much?
— HDD average rotational latency : 3ms
— HDD average seek time: 5ms

— Transfer time from HDD: 0.05ms/page

» Total time for bringing in a page = 8ms= 8,000,000ns
— Memory access time: 200ns
— Thus, Major Page Faultis 40,000 times slower

CS5423: Operating Systems Design 6

MP3 Overview

Work Work Work Monitor
Process 1 Process 2 Process 3 Process
(100MB) (10MB) (1GB)
_ MP3 Profiler
Linux Kernel Kernel Module

Disk

Post-Mortem
Analysis

page
//
CPU Utilization
B::-o 8
&% 5
ERE

.
number of frames Degree of Multiprogramming

CS5423: Operating Systems Design

Mlsiigle

* Major page fault

* Minor page fault

« CPU utilization
— Calculated as a rate

cpu time stimep+utime
* Fortask T: Uy = 22200 — T T
wall time Jiffies
« stime: Time spent in kernel space

« utime: Time spent in user space

CS5423: Operating Systems Design 8

‘ Thrashing

NCPU

utillization

>
Thrashing

degree of
multiprogramming

CS5423: Operating Systems Design 9

Measurement

« Accuracy of Measurement
— Many profiling operations are needed in a short time interval.

« Copy to user space causes a significant performance
overhead

« Solution: Use Shared Memory

CS5423: Operating Systems Design

Memory Map

Virtual Addr. Virtual Addr.

4GB 4GB

Physical Addr.

Profiler Profiler
Buffer Buffer

3GB 3GB

Profiler
Buffer

vmalloc()
“PG_reserved”

CS5423: Operating Systems Design

Char Device and Shared Memory

A character device driver Is used as a control interface of
the shared memory

— Map Shared Memory (i.e., mmap()): To map the profiler buffer
memory allocated in the kernel address space to the virtual
address space of a requesting user-level process

« Shared memory

— Normal memory access: Used to deliver profiled data from the
kernel to user processes

CS5423: Operating Systems Design

Interface of Kernel Module

« Three types interfaces between the OS kernel module
and user processes:

—a Proc file
— a character device driver
— a shared memory area

CS5423: Operating Systems Design

Proc File System

* Proc filesystem entry (/proc/mp3/status)
— Register: Application to notify its intent to monitor its page fault
rate and utilization.
« ‘R <PID>’
— Deregister: Application to notify that the application has finished
using the profiler.
« ‘U <PID>’
— Read Registered Task List: To query which applications are
registered.
» Return a list with the PID of each application

CS5423: Operating Systems Design

MP3 Design

A1l
— . ; ProcFS —3 Controla -~
<— Write Op. Work Queue |
Work — s A5 p =2, Q 1
Process < ¥ 0 I
pum PV > Char. Device | 1! . : H
e Driver tb=3 Linked List Ll
> Interface for Reg. Tasks = ||
B1 ¥
Module : i
B2 Init/Exit Monitor 11
mmap() | f—l
B4 Allocate Woerueue
Monitor or free
Process p B3 Profiler Process
buffer Control Block
Kernel Space

Al. Register A2. Allocate Memory Block A3. Memory Accesses A4. Free Memory Blocks
AS5. Unregister B1l. Open B3. Read Profiled Data B4. Close

CS5423: Operating Systems Design

Workload

« Work program (given for case studies)

— A ssingle threaded user-level application with three parameters:
memory size, locality pattern, and memory access count per
iteration

» Allocates a request size of virtual memory space (e.g., up to 1GB)

« Accesses them with a certain locality pattern (i.e., random or
temporal locality) for a requested number of times

» The access step is repeated for 20 times.

— Multiple instances of this program can be created (i.e., forked)
simultaneously.

CS5423: Operating Systems Design

Monitoring Program

« Monitor application is also given
— Requests the kernel module to map the kernel-level profiler
buffer to its user-level virtual address space (i.e., using mmap()).

» This request is sent by using the character device driver created by
the kernel module.

— The application reads profiling values (i.e., major and minor page
fault counts and utilization of all registered processes).

— By using a pipe, the profiled data is stored in a regular file.
» So that these data are plotted and analyzed later.

CS5423: Operating Systems Design

Deferring VWork

« Itis common in kernel code to defer part of the work

« E.g. Interrupt handler code
— Some or all interrupts are disabled when handling it
— While handling one, we might lose new interrupts
— S0, make the handling as fast as possible
— Top half
— Bottom half

« Better performance because :

— quick response to interrupts
— by deferring non-time-sensitive part of the work to later

CS5423: Operating Systems Design

Work Queue

 Bottom-half mechanism used to defer work

« Work queues run in process context.
— Work queues can sleep, invoke the scheduler, and so on.
— The kernel schedules bottom halves running in work queues.

 The work queue execute user’s bottom half as a specific
function, called a work queue handler or simply a work
function.

* Linux provides a common work queue but you can also
Initialize your own

CS5423: Operating Systems Design

Creating/Destroying a VWork Queue _\[

* In order to create a work queue, you need to:
— Call the create_workqueue() function
— Which returns a workqueue_struct reference
— struct workqueue_struct *create_workqueue(name);

It can later be destroyed by calling the
destroy workqueue() function
— void destroy _workqueue(struct workqueue_struct *);

CS5423: Operating Systems Design

Creating/Destroying a VWork Queue _\[

« The work to be added to the queue Is
— Defined by struct work _Struct
— Initialized by calling the INIT_WORK() function
— INIT_WORK(struct work_struct *work, func);

* Now that the work is initialized, it can be added to the
work queue by calling one of the following:

— int queue_work(struct workqueue _struct *wq, struct work_struct
*work);

— Int queue_work_on(int cpu, struct workqueue_struct *wq, struct
work_struct *work);

CS5423: Operating Systems Design

Creating/Destroying a Work Queue

* Flush_work(): to flush a particular work and block until

the work is complete
— int flush_work(struct work_struct *work);

* Flush_workqueue(): similar to flush_work() but for the

whole work queue
— int flush_workqueue(struct workqueue_struct *wq);

CS5423: Operating Systems Design

Creating/Destroying a Work Queue

« Cancel _work(): to cancel a work that is not already
executing in a handler
— The function will terminate the work in the queue

— Or block until the callback is finished (if the work is already In
progress in the handler)

— int cancel_work sync(struct work_struct*work);

« Work Pending(): to find out whether a work item is
pending or not
— work_pending(work);

CS5423: Operating Systems Design

Character Device Driver

 Initialize data structure
— void cdev _init(struct cdev *cdeyv, struct file_operations *fops);

« Add to the kernel
— Int cdev_add(structcdev *dev, dev_t num, unsigned int count);

 Delete from the kernel
— void cdev_del(struct cdev *dev);

CS5423: Operating Systems Design

Character Device Driver

static int my_open(struct inode *inode, struct file *filp);

static struct file_operations my_fops = {
.0pen = my_open,
release = my release,
.mmap = my_mmap,
.owner = THIS MODULE,
I3

CS5423: Operating Systems Design

Memory Map

« Gets Page Frame Number
— pfn =vmalloc_to_pfn(virt_addr);

« Maps a virtual page to a physical frame
— remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED);

(see http://www.makelinux.net/ldd3/chp-15-sect-2)

CS5423: Operating Systems Design

More Questions?

o Office hours

« Campuswire

CS5423: Operating Systems Design

