Data Reliability

Interpreting Sensor Data

Reminders:

- HW1 due now.
- HW2 out this evening.

Analogy

- System reliability challenge:
- Building reliable systems from less reliable components
- Data reliability challenge:
- Making reliable conclusions from less reliable (sensor) data

Making Conclusions from Probabilistic Data

- Cyber-physical systems obtain data about their environment via sensors
- Sensors (or data sources in general) are often imperfect
- The challenge is: how to correctly compute the "state of the environment" given sensor readings?

Review: Things You Should Know About Probabilities

- Probability of multiple simultaneous events
- What are the odds that it rains and my basement floods? Say P(rains) $=0.2$. P(flood)
$=0.1$

Review: Things You Should Know About Probabilities

- Probability of multiple simultaneous events
- What are the odds that it rains and my basement floods?
- Answer: It is the odds that "it rains", times the odds that "my basement floods given that it rains":

$$
P(\text { rain, flood })=P(\text { rain }) P(\text { flood } \mid \text { rain })
$$

Note: $\mathrm{P}($ flood \mid rain $)$ is larger than $\mathrm{P}($ flood $)$

Review: Things You Should Know About Probabilities

- $P(A, B)=P(A \mid B) \cdot P(B)$
- Corollary: If events A and B are independent, the odds of them happening together is the product of their individual probabilities.
- $P(A, B)=P(A) \cdot P(B)$

Note: This is because $P(A \mid B)=P(A)$

Review: Probability versus Conditional Probability

- Probability: the odds that something, say X, happens, $P(X)$.
- Conditional probability: the odds that X happens given that a certain condition, C, has occurred, $\mathrm{P}(\mathrm{X} \mid \mathrm{C})$.
- This condition may affect the odds.

Review: Probability versus Conditional Probability

- Probability: the odds that something, say X, happens, $P(X)$.
- Conditional probability: the odds that X happens given that a certain condition, C, has occurred, $\mathrm{P}(\mathrm{X} \mid \mathrm{C})$.
- This condition may affect the odds.
- Traffic example:
- P(Accident) may be low
- P(Accident|Black ice) is a lot higher!

A Visual Interpretation

The universe of all possibilities

A Visual Interpretation

The universe of all possibilities

No Black Ice
Black Ice Conditions

Consider a graphical visualization of probabilities where area represents probability

A Visual Interpretation

The universe of all possibilities

Consider a graphical visualization of probabilities where area represents probability

A Visual Interpretation

The universe of all possibilities

Consider a graphical visualization of probabilities where area represents probability

A Visual Interpretation

- $\mathrm{P}($ Accident $)=$

The universe of all possibilities

$(N \& A+B \& A) /(N+B)$

A Visual Interpretation

- $\mathrm{P}($ Accident $)=$

The universe of all possibilities

(N\&A+B\&A)/(N+B)

- $\mathrm{P}($ Accident $\mid \mathrm{Ice})=$ (B\&A)/B
- P(Accident|No Ice)
$=(N \& A) / N$

A Visual Interpretation

- $\mathrm{P}($ Accident $)=$

The universe of all possibilities
 $(N \& A+B \& A) /(N+B)$

- $\mathrm{P}($ Accident $\mid \mathrm{Ice})=$ (B\&A)/B
- P(Accident|No Ice)
$=(N \& A) / N$
Question: If $\mathrm{P}($ Accident \mid Ice $)=0.1, \mathrm{P}($ Accident \mid No-Ice $)=0.02, \mathrm{P}($ Ice $)=0.2$, what are the odds of accidents in general, P (Accident)?

A Visual Interpretation

The universe of all possibilities

- (B\&A)/B = 0.1
- $(\mathrm{N} \mathrm{\& A}) / \mathrm{N}=0.02$
- $B /(B+N)=0.2$
- (N\&A+B\&A)/(N+B)?

Question: If $\mathrm{P}($ Accident \mid Ice $)=0.1, \mathrm{P}($ Accident \mid No-Ice $)=0.02, \mathrm{P}($ Ice $)=0.2$, what are the odds of accidents in general, P (Accident)?

Review:

Total Probability Theorem

$P($ Something $)=P($ Something $\mid X) P(X)+P($ Something $\mid X) P(X)$
The universe of all possibilities

- $\mathrm{P}($ Accident $)=$

$$
0.1 * 0.2
$$

$+0.02 * 0.8$
$=0.032$

Question: If $\mathrm{P}($ Accident \mid Ice $)=0.1, \mathrm{P}($ Accident \mid No-Ice $)=0.02, \mathrm{P}($ Ice $)=0.2$, what are the odds of accidents in general, P (Accident)?

Example: Probability versus Conditional Probability

- A father is accused of murdering his abused child. The lawyer says that only 2% of men who abuse their children actually end up killing them, so the odds that this is a murder are very low.
- Is this argument statistically valid? If so, explain why (mathematically). If not, why not?

Example: Probability versus Conditional Probability

- A father is accused of murdering his abused child. The lawyer says that only 2% of men who abuse their children actually end up killing them, so the odds that this is a murder are very low.
- The relevant statistic is: given that an abused child is murdered, what are the odds that the father did it? (This happens to be 50\%)

Example: Probability versus Conditional Probability

- A father is accused of murdering his abused child. The lawyer says that only 2% of men who abuse their children actually end up killing them, so the odds that this is a murder are very low.

Conditional probability

- The relevant statistic is: given that an abused child is murdered, what are the odds that the father did it? (This happens to be 50\%)

A Visual Interpretation

The universe of all possibilities

A Visual Interpretation

The universe of all possibilities

Example: Intrusion Detection

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September 16 ${ }^{\text {th }}$, 2013, the alarm was set off. What are the odds that a burglar is in the building?

Example: Asteroid Collision with Earth

- If a major Asteroid collides with Earth in St. Louis, traffic on I-74 will be backed up.
- On Feb 10 th, 2014, there was a big back-up on I-74. What are the odds that a major Asteroid collided with Earth?

Example: Asteroid Collision with Earth

- If a major Asteroid collides with Earth in St. Louis (A), traffic on I-74 will be backed up (B).
- $P(B \mid A)=P($ Backup given Asteroid $)=1$
- On Feb $10^{\text {th }}, 2014$, there was a big back-up on I-74 (B). What are the odds that a major Asteroid collided with Earth in St. Louis (A)?
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}$ (Asteroid given Backup) = ?

Factors to Consider P (Asteroid given Backup) ?

Factors to Consider
 P (Asteroid given Backup) ?

- How often do major asteroids hit earth?
- $\mathrm{P}(\mathrm{A})=\mathrm{P}($ Asteroid $)=$?
- The less often it happens, the less likely it is that a traffic jam is attributed to an asteroid.
- How often traffic backs up on I-74
- $\mathrm{P}(\mathrm{B})=\mathrm{P}($ Backup $)=$?
- The more often this happens the less likely it is to be an indicator of asteroid collision

Factors to Consider
 P (Asteroid given Backup) ?

- How often do major asteroids hit earth?
- $\mathrm{P}(\mathrm{A})=\mathrm{P}($ Asteroid $)=$?
- The less often it happens, the less likely it is that a traffic jam is attributed to an asteroid.
- How often traffic backs up on I-74
- $\mathrm{P}(\mathrm{B})=\mathrm{P}($ Backup $)=$?
- The more often this happens the less likely it is to be an indicator of asteroid collision
- $P(A \mid B)=P(B \mid A) \cdot P(A) / P(B)$

Factors to Consider P (Asteroid given Backup) ?

- $P(A)=P($ Asteroid $)=0.00001$
- $P(B)=P($ Backup $)=0.01$
- $P(B \mid A)=1$
- $P(A \mid B)=P(B \mid A) \cdot P(A) / P(B)=0.001$

Review of Important
 Theorems

- Total Probability Theorem:
$P(A)=P\left(A \mid C_{1}\right) P\left(C_{1}\right)+\ldots+P\left(A \mid C_{n}\right) P\left(C_{n}\right)$
where C_{1}, \ldots, C_{n} cover the space of all possibilities
- Bayes Theorem:

$$
P(A \mid B)=P(B \mid A) \cdot P(A) / P(B)
$$

- Other: $P(A, B)=P(A \mid B) P(B)$

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September 16 ${ }^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September 16 ${ }^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?
- Assume the alarm goes off about 3 days a year and burglaries happen about once a year

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September $16^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?
- Assume the alarm goes off about 3 days a year and burglaries happen about once a year
- $P(A)=P($ Alarm $)=3 / 365$
- $P(B)=P($ Burglar $)=1 / 365$
- $P(A \mid B)=0.99$

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September $16^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?
- Assume the alarm goes off about 3 days a year and burglaries happen about once a year
- $P(A)=P($ Alarm $)=3 / 365$
- $P(B)=P($ Burglar $)=1 / 365$
- $P(A \mid B)=0.99$
- $P(B \mid A)=P(A \mid B) \cdot P(B) / P(A)=0.33$ (i.e., if alarm sounds, there is a 33% chance it is a burglar)

Multisensor Data Fusion

A Second Sensor

- In the intrusion detection example, assume that there is a vibration sensor on the floor that detects footsteps. If a burglar enters the building, there is a 90% chance that the vibration sensor will fire. If the vibration sensor fires, what are the odds that there is a burglar? Assume that the vibration sensor fires 10 times a year

A Second Sensor

- In the intrusion detection example, assume that there is a vibration sensor on the floor that detects footsteps. If a burglar enters the building, there is a 90% chance that the vibration sensor will fire. If the vibration sensor fires, what are the odds that there is a burglar? Assume that the vibration sensor fires 10 times a year
- $P($ Burg \mid vib $)=P(V i b \mid B u r g) \cdot P(B u r g) / P(V i b)$

$$
=0.9 *(1 / 365) /(10 / 365)=0.09
$$

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, V i b)=$?

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Now what?
Is it $O K$ to say $P(A, V \mid B)=P(A \mid B) P(V \mid B)$?
Is it OK to say $\mathrm{P}(\mathrm{A}, \mathrm{V})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{V})$?

Independence versus Conditional Independence

- John and Sally follow Mike on Twitter.
- When Mike tweets something, John retweets it with a 50% probability. Sally retweets it with a 30% probability.
- Are John's and Sally's tweets independent?

Independence versus Conditional Independence

- John and Sally follow Mike on Twitter.
- When Mike tweets something, John retweets it with a 50% probability. Sally retweets it with a 30% probability.
- Are John's and Sally's tweets independent?
- No. However, given that Mike says something, their decisions to re-tweet it are independent (conditional independence)

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Now what?
OK to say $P(A, V \mid B)=P(A \mid B) P(V \mid B)$
$P(A, V)=P(A) P(V) ?$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$ where $P(A, V)=P(A, V \mid B) P(B)+P(A, V \mid \bar{B}) P(\bar{B})$ and $P(A, V \mid B)=P(A \mid B) P(V \mid B)$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$ where $P(A, V)=P(A, V \mid B) P(B)+P(A, V \mid \bar{B}) P(\bar{B})$ and $P(A, V \mid B)=P(A \mid B) P(V \mid B)$

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~V} \mid \overline{\mathrm{B}})=\mathrm{P}(\mathrm{~A} \mid \overline{\mathrm{B}}) \mathrm{P}(\mathrm{~V} \mid \overline{\mathrm{B}})
$$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- P (Burg|A, Vib) Solution steps:
- Find the probability of false alarms from:

$$
\begin{aligned}
& P(A)=P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B}) \\
& P(V)=P(V \mid B) P(B)+P(V \mid \bar{B}) P(\bar{B})
\end{aligned}
$$

- Find the probability of both sensors firing:

$$
\begin{gathered}
P(A, V)=P(A, V \mid B) P(B)+P(A, V \mid \bar{B}) P(\bar{B}) \\
\text { where } P(A, V \mid B)=P(A \mid B) P(V \mid B) \\
P(A, V \mid \bar{B})=P(A \mid \bar{B}) P(V \mid \bar{B}) \\
=P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)=94.62 \%
\end{gathered}
$$

Key Things to Remember

- Total Probability Theorem:
- $P(A)=P(A \mid C 1) P(C 1)+\ldots+P(A \mid C n) P(C n)$ where $\mathrm{C} 1, \ldots, \mathrm{Cn}$ cover the space of all possibilities
- Bayes Theorem: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) . \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
- Other: $P(A, B)=P(A \mid B) P(B)$

Practice and Review: Conditional Probabilities

- A driver with a history of substance abuse is severely injured when his car spins out of control hitting a stop sign. Police and ambulance vehicles are dispatched. A police officer at the scene suggests to a paramedic that the driver must have been intoxicated. The paramedic answers: "Statistically, only 10\% of individuals with substance abuse problems end up in severe car crashes, so it may well have been something else".
- Is the argument valid?

Practice and Review: Conditional Probabilities

- A driver with a history of substance abuse is severely injured when his car spins out of control hitting a stop sign. Police and ambulance vehicles are dispatched. A police officer at the scene suggests to a paramedic that the driver must have been intoxicated. The paramedic answers: "Statistically, only 10% of individuals with substance abuse problems end up in severe car crashes, so it may well have been something else".
- Is the argument valid?
- No. The relevant statistic here is: Given that a person with a history of substance abuse ends up in a severe car crash, what are the odds that there were under influence? (These odds are very high.)

Practice and Review: Conditional Probabilities

- An obstacle sensor on a robot is used to detect nearby obstacles on the path. When an obstacle is present, it is detected with a 99.9\% probability. When the sensor fires, what is the probability that an obstacle lies in the robot's path?

Practice and Review: Conditional Probabilities

- An obstacle sensor on a robot is used to detect nearby obstacles on the path. When an obstacle is present, it is detected with a 99.9\% probability. When the sensor fires, what is the probability that an obstacle lies in the robot's path?
- Not clear; we do not know the rate of false positives (instances when the sensor fires in the absence of obstacles).

Conditional Independence

- Two obstacle sensors are mounted near each other on the front of a robot. The probability that one of them fires in a particular time interval is 5%. What is the probability that both fire simultaneously?

Conditional Independence

- Two obstacle sensors are mounted near each other on the front of a robot. The probability that one of them fires in a particular time interval is 5%. What is the probability that both fire simultaneously?
- We cannot compute the numeric answer because the sensors are not independent. We need more information.

Conditional Independence

- Two obstacle sensors are mounted near each other on the front of a robot. When an obstacle appears in front of the robot, the probability that one of them fires is 75%. What is the probability that both fire at that time?

Conditional Independence

- Two obstacle sensors are mounted near each other on the front of a robot. When an obstacle appears in front of the robot, the probability that one of them fires is 75%. What is the probability that both fire at that time?
- $(0.75)^{2}$

Multisensor Fusion

- A defense sensor (radar) is used to detect incoming missiles. The probability of a missile being fired in the vicinity of the sensor is 1%. When a missile is fired, the sensor detects it with 98% probability. The sensor also has a 20% false positive rate. Three sensors are deployed. When all three sensors indicate a missile, what is the probability that an actual missile is fired?

Three Sensor Example

- $P(M \mid S 1, S 2, S 3)=54.3 \%$
- $P(M \mid S 1, S 2, S 3)=P(S 1, S 2, S 3 \mid M) P(M) / P(S 1, S 2, S 3)$, where: $P(S 1, S 2, S 3)=P(S 1, S 2, S 3 \mid M) P(M)+P(S 1, S 2, S 3 \mid n o M) P(n o M)$ and

$$
P(S 1, S 2, S 3 \mid M)=P(S 1 \mid M) P(S 2 \mid M) P(S 3 \mid M)
$$

$$
P(S 1, S 2, S 3 \mid \text { no } M)=P(S 1 \mid n o M) P(S 2 \mid n o M) P(S 3 \mid n o M)
$$

Multisensor Fusion

- In the preceding example, how many sensors do you need in order to raise the probability of there being a target (when all sensors fire) to over 95% ?

Robot Example:

- A robot has a camera that detects obstacles with probability 70%, a bump sensor that detects imminent collisions with a probability of 99.9% (when an obstacle is 1 inch away), and a cliff sensor that detects imminent falls off a cliff with a probability of 99.9% (when the cliff is 1 inch away). The robot has breaks that can stop it within 0.1 second. The mission is to deliver supplies from point A to point B, safely.
- What are safety-critical requirements?
- What are mission-critical (i.e., performance) requirements?
- What is a safe state?
- How to ensure well-formed dependencies?
- What is a safe speed for the robot?
- Is the algorithm that computes speed based on preferred arrival time and route safety-critical or mission-critical?

