
Real-time Scheduling

Introduction to Real-Time



A Robotic Design Example
(Revisited)

 A robot has a camera that detects obstacles with probability 70%, a 
bump sensor that detects imminent collisions with a probability of 99.9% 
(when an obstacle is 1 inch away), and a cliff sensor that detects 
imminent falls off a cliff with a probability of 99.9% (when the cliff is 1 
inch away). The robot has breaks that can stop it within 0.1 second. The 
mission is to deliver supplies from point A to point B, safely.
 What are safety-critical requirements?
 What are mission-critical (i.e., performance) requirements?
 What is a safe state?
 How to ensure well-formed dependencies?
 What is a safe speed for the robot?
 Is the algorithm that computes speed based on preferred arrival time and 

route safety-critical or mission-critical?



The Schedulability Question:
Drive-by-Wire Example

 Consider a control system in an autonomous robot
 Navigation guidance is computed every 10 ms – wheel 

positions adjusted accordingly (computing the adjustment 
takes 4.5 ms of CPU time)

 Threats and obstacles are reassessed every 4 ms –
breaks adjusted accordingly (computing the adjustment 
takes 2ms of CPU time)

 Optimal speed is computed every 15 ms – robot speed is 
adjusted accordingly (computing the adjustment takes 
0.45 ms)

 For safe operation, adjustments must always be 
computed before the next sample is taken

 Is it possible to always compute all adjustments in 
time?



Some Terminology
 Tasks, periods, arrival-time, deadline, 

execution time, etc.

Time

Period, Pi

Task i

Take a sample Take the next sample

Compute adjustment

Must be done
Before next sample
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Some Terminology
 Tasks, periods, arrival-time, deadline, 

execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei
(Computation time, ci)

Start time, si Finish time, fi



Back to
Drive-by-Wire Example

 Find a schedule that makes sure all task 
invocations meet their deadlines

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)



Back to
Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have 
5 homeworks due this time tomorrow, each takes 6 hours, then 
5x6 = 30 > 24  you are overutilized)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)



Back to
Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have 
5 homeworks due this time tomorrow, each takes 6 hours, then 
5x6 = 30 > 24  you are overutilized)
 Hint: Check if processor utilization > 100%

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)



Task Scheduling
 Decision #1: In what order should tasks be executed?

 Hand-crafted schedule (fill timeline by hand)
 Priority based schedule (assign priorities  schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?



Task Scheduling
 Decision #1: In what order should tasks be executed?

 Hand-crafted schedule (fill timeline by hand)
 Priority based schedule (assign priorities  schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority



Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

 Decision #2: Preemptive versus non-preemptive?
 Preemptive: Higher-priority tasks can interrupt lower-priority ones
 Non-preemptive: They can’t

In this example, will non-preemptive scheduling work?



Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
- Hint: Compare relative deadlines of tasks to execution times of others

 Decision #2: Preemptive versus non-preemptive
 Preemptive: Higher-priority tasks can interrupt lower-priority ones
 Non-preemptive: They can’t



Timeline
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)
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Fix: 
Give this task invocation
a lower priority



Timeline
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Fix: 
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Task Scheduling
 Decision #3: Static versus Dynamic priorities?

 Static: Instances of the same task have the same priority
 Dynamic: Instances of same task may have different priorities

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Dynamic priorities offer the designer more flexibility and 
hence are more capable to meet deadlines 



Interesting Questions
 What is the optimal dynamic priority scheduling 

policy? (Optimal: meets all deadlines as long as 
any other policy in its class can)
 Can it meet all deadlines as long as the processor is 

not over-utilized?
 What is the optimal static priority scheduling 

policy?
 When can it meet all deadlines?
 Can it meet all deadline as long as the processor is 

not over-utilized?



Interesting Questions
 What is the optimal dynamic priority scheduling 

policy? (Optimal: meets all deadlines as long as 
any other policy in its class can)
 Can it meet all deadlines as long as the processor is 

not over-utilized?
 What is the optimal static priority scheduling 

policy?
 When can it meet all deadlines?
 Can it meet all deadline as long as the processor is 

not over-utilized?

Utilization
Bounds



Main Results in Real-time 
Scheduling of Periodic Tasks

Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality



Advanced: Earliest Deadline 
First (EDF) Optimality Result

 EDF is the optimal dynamic priority scheduling 
policy
 It can meet all deadlines whenever the processor 

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after, 
which one do you do first?

 If you started with HW2 and met both deadlines you could have 
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2 HW1

Deadline
HW1

Deadline
HW2Ok?



Earliest Deadline First (EDF)
Optimality Result

 EDF is the optimal dynamic priority scheduling 
policy
 It can meet all deadlines whenever the processor 

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after, 
which one do you do first?

 If you started with HW2 and met both deadlines you could have 
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2HW1

Deadline
HW1

Deadline
HW2Non-EDF Ok  EDF OK!



When can EDF Meet 
Deadlines?

 Consider a task set where:

 Imagine a policy that reserves for each task 
i a fraction fi of each clock tick, where fi = Ci 
/Pi

1
i i

i

P
C

Clock tick



Utilization Bound of EDF
 Imagine a policy that reserves for each task i a 

fraction fi of each time unit, where fi = Ci /Pi

 This policy meets all deadlines, because within 
each period Pi it reserves for task i a total time
 Time = fi Pi = (Ci / Pi) Pi = Ci  (i.e., enough to finish)

Clock tick



Utilization Bound of EDF
 Pick any two execution chunks that are not in 

EDF order and swap them
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Utilization Bound of EDF
 Pick any two execution chunks that are not in 

EDF order and swap them

 Still meets deadlines!
 Repeat swap until all in EDF order
 EDF meets deadlines



Rate Monotonic Scheduling

 Rate monotonic scheduling is the optimal 
fixed-priority scheduling policy for periodic 
tasks (with period = deadline).



The Worst-Case Scenario
 Consider the worst case where all tasks 

arrive at the same time.

 If any fixed priority scheduling policy can 
meet deadline, rate monotonic can!



Optimality of Rate Monotonic
 If any other policy can meet deadlines so 

can RM

Policy X meets deadlines? 



Optimality of Rate Monotonic
 If any other policy can meet deadlines so 

can RM

Policy X meets deadlines?
 RM meets deadlines



Utilization Bounds
 Intuitively: 

 The lower the processor utilization, U, the easier it is to 
meet deadlines.

 The higher the processor utilization, U, the more 
difficult it is to meet deadlines.

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed 



Example 
(Rate-Monotonic Scheduling)
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A Conceptual View of 
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed
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A Conceptual View of 
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Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines may or may not be missed

?

U < Ubound is a 
sufficient but 
not necessary
schedulability
condition
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The Schedulability Condition






  12

1
nnU

2ln Un

For n independent periodic tasks with periods equal to 
deadlines,  the utilization bound is:



Done Today
Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality


