!'_ Real-time Scheduling

Introduction to Real-Time

A Robotic Design Example
(Revisited)

= A robot has a camera that detects obstacles with probability 70%, a
bump sensor that detects imminent collisions with a probability of 99.9%
(when an obstacle is 1 inch away), and a cliff sensor that detects
imminent falls off a cliff with a probability of 99.9% (when the cliff is 1
inch away). The robot has breaks that can stop it within 0.1 second. The
mission is to deliver supplies from point A to point B, safely.

= What are safety-critical requirements?

=« What are mission-critical (i.e., performance) requirements?
= What is a safe state?

= How to ensure well-formed dependencies?

= What is a safe speed for the robot?

= Is the algorithm that computes speed based on preferred arrival time and
route safety-critical or mission-critical?

The Schedulability Question:
i Drive-by-Wire Example

= Consider a control system in an autonomous robot

= Navigation dguidance is computed every 10 ms — wheel
positions adjusted accordingly (computing the adjustment
takes 4.5 ms of CPU time)

= Threats and obstacles are reassessed every 4 ms —
breaks adjusted accordingly (computing the adjustment
takes 2ms of CPU time)

=« Optimal speed is computed every 15 ms — robot speed is
Sdigsted) accordingly (computing the adjustment takes
45 ms

= For safe operation, adjustments must always be
computed before the next sample is taken

m IS it ?possible to always compute all adjustments in
time:

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

Take the next sample
Take a sample Must be done
/ Before next sample /

Compute adjustment \
Task i

Period, P,

Time

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

Arrival time, a;
(Release time, r,)

Must be done

Before next sample

Task i

N

Arrival of
Next invocation

Time

Period, P,

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

Arrival of
,(B‘F;:ellveaa:stén;i(a,1 g,- r) Deadline, 4, Next invocation
| Task i
Time

Relative Deadline, D,

Period, P,

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

o Arrival of
AF;rllvaI tm;_e, % Execution time, e, Deadline, 4, ~ Next invocation
(Release time, 7)) compytation time, c,)
| Task i
Time

Relative Deadline, D,

Period, P,

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

Start time, s; Finish time, f;

Arrival of
Deadline, 4, Next invocation

Arrival time, g,
(Release time, r;)

Execution time, e,
(Computation time, c,)

Task i

Relative Deadline, D, Time

Period, P,

Back to
i Drive-by-Wire Example

= Find a schedule that makes sure all task
invocations meet their deadlines

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to
i Drive-by-Wire Example

= Sanity check #1: Is the processor over-utilized? (e.qg., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24 - you are overutilizecf)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to
i Drive-by-Wire Example

= Sanity check #1: Is the processor over-utilized? (e.qg., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24 - you are overutilizecf)

= Hint: Check if processor utilization > 100%

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

i Task Scheduling

s Decision #1: In what order should tasks be executed?

= Hand-crafted schedule (fill timeline by hand)
= Priority based schedule (assign priorities = schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?

i Task Scheduling

Decision #1: In what order should tasks be executed?
=« Hand-crafted schedule (fill timeline by hand)
= Priority based schedule (assign priorities = schedule is implied)

Breaks task (2 ms every 4 ms)

< Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority

i Task Scheduling

= Decision #2: Preemptive versus non-preemptive?
= Preemptive: Higher-priority tasks can interrupt lower-priority ones
= Non-preemptive: They can't

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?

i Task Scheduling

= Decision #2: Preemptive versus non-preemptive
= Preemptive: Higher-priority tasks can interrupt lower-priority ones
= Non-preemptive: They can't

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
- Hint: Compare relative deadlines of tasks to execution times of others

Timeline

= Deadlines are missed!
= Average Utilization < 100%

Breaks task (2 ms every 4 ms)

| | I I | |

Steering task (4.5 ms every 10 ms)

Illlh_\l_llzl‘llllh:llll

Velocity control task (0.45 ms every 15 ms)

I |

Timeline

= Deadlines are missed!
= Average Utilization < 100%

Breaks tamry 4 ms)
| | | | | |

Steering&cask (4.5 ms/every 10 ms)

Illl\h—_\/ D‘Illlh:llll

Velocity control task (0.45 ms every 15 ms)

I |

a lower priority

. . Fix:
i Tl m el InNe Give this task invocation

s Deadlineg’are missed!
= Averagg Utilization < 100%

Breaks task’(2 msevery 4 ms)

/e e\ e e e

Steering\task (4.5 ms/every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation
a lower priority

Velocity control task (0.45 ms every 15 ms)

i Task Scheduling

= Decision #3: Static versus Dynamic priorities?
« Static: Instances of the same task have the same priority
= Dynamic: Instances of same task may have different priorities

Breaks task’(2 msevery 4 ms)

L|I

Steering\task (4.5 ms/every 10 ms)

Illli

II’IIIII:I‘IIIIE:lIII
DN

Velocity control task (0.45 ms every 15 ms)

1

Intuition: Dynamic priorities offer the designer more flexibility and
hence are more capable to meet deadlines

i Interesting Questions

= What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as
any other policy in its class can)
= Can it meet all deadlines as long as the processor is
not over-utilized?
= What is the optimal static priority scheduling
policy?
= When can it meet all deadlines?

= Can it meet all deadline as long as the processor is
not over-utilized?

i Interesting Questions

= What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as
any other policy in its class can)
= Can it meet all deadlines as long as the processor is

not over-utilized?
= What is the optimw scheduling
policy? Utilization

= When can it meet all deadlines? — Bounds

=« Can it meet\g)f deadline as long as the processor is
not over-utilizad?

Main Results in Real-time
* Scheduling of Periodic Tasks

Advanced: Earliest Deadline
i First (EDF) Optimality Result

= EDF is the optimal dynamic priority scheduling
policy
= It can meet all deadlines whenever the processor
utilization is less than 100%
= Intuition:

= You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

= If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

= EDF can meet deadlines whenever anyone else can

Deadline Deadline
Ok? HW1 HW?2

Earliest Deadline First (EDF)
i Optimality Result

= EDF is the optimal dynamic priority scheduling
policy
= It can meet all deadlines whenever the processor
utilization is less than 100%
= Intuition:

= You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

= If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

= EDF can meet deadlines whenever anyone else can

Deadline Deadline
Non-EDF Ok - EDF OK! HW1 HW?2

HW?2

When can EDF Meet
i Deadlines?

s Consider a task set where:

Ci_
> 6

l i

= Imagine a policy that reserves for each task
i a fraction f; of each clock tick, where f,= C,
/P.

l

Bl

) Clock tick

i Utilization Bound of EDF

= Imagine a policy that reserves for each task i a
fraction f; of each time unit, where f,= C,/P,

e = -.' .

) Clock tick

= This policy meets all deadlines, because within
each period P, it reserves for task i a total time

= Time=f,P,=(C,/P,) P,=C, (i.e., enough to finish)

‘L Utilization Bound of EDF

= Pick any two execution chunks that are not in
EDF order and swap them

Lo o .

‘L Utilization Bound of EDF

= Pick any two execution chunks that are not in
EDF order and swap them

s Still meets deadlines!

‘L Utilization Bound of EDF

= Pick any two execution chunks that are not in
EDF order and swap them

i bl

s Still meets deadlines!

= Repeat swap until all in EDF order
- EDF meets deadlines

i Rate Monotonic Scheduling

= Rate monotonic scheduling is the optimal
fixed-priority scheduling policy for periodic
tasks (with period = deadline).

i The Worst-Case Scenario

s Consider the worst case where all tasks
arrive at the same time.

= If any fixed priority scheduling policy can
meet deadline, rate monotonic can!

‘L Optimality of Rate Monotonic

= If any other policy can meet deadlines so

can RM
| . - i

Policy X meets deadlines?

‘L Optimality of Rate Monotonic

= If any other policy can meet deadlines so

can RM
| . - i

Policy X meets deadlines? YES
- RM meets deadlines

t_- - Sl

i Utilization Bounds

= Intuitively:

= The lower the processor utilization, U, the easier it is to
meet deadlines.

= The higher the processor utilization, U, the more
difficult it is to meet deadlines.

= Question: is there a threshold U, . such that
« When U < U, ., deadlines are met
« When U > U,,,,, deadlines are missed

Example
i (Rate-Monotonic Scheduling)

Task 1
P,=2
C,=1 | |
Task 2
P,=3
C=101 ' ‘ “ri00%
| | | | | | N
0 1 2 3 4 5 6 time
C, C, 1 1.01 ?
U=—+ + ~ 83.3%
P P 23
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Example
‘L (Rate-Monotonic Scheduling)

Task 1
P,=2
=1 [momm e e |
Task 2
P,=3
C,=1.01 ' ‘ “r100%
| | | | | | .
0 1 2 3 4 5 6 time
C, C, 1 1.01 ?
U=—+ + ~ 83.3%
P P 23
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Example
‘L (Rate-Monotonic Scheduling)

Task 1 Missed deadline!
P,=2
c =1 |
Task 2
P,=3
C=101 — S ! ‘ Y 100%
| | | | | | | > 83 39
0 1 2 3 4 5 6 time
?
=G G 101
+ Sy
R P 2%
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Another Example
i (Rate-Monotonic Scheduling)

Task 1
P,=2
c =1 |
Task 2
P,=6
ci=2.4 ‘ Y 100%
| | | | | | | 83 39
0 1 2 3 4 5 6 time
¢ ,C _1 24 ?
U = =90%
B P 2 6
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Another Example
‘L (Rate-Monotonic Scheduling)

Task 1
P,=2
=1 s s e |
Task 2
P,=6
c2=2.4 ‘ Y 100%
| | | | | | | —
0 1 2 3 4 5 6 time
¢ ,C _1 24 ?
U = =90%
P P 2 6
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Another Example
‘L (Rate-Monotonic Scheduling)

Task 1
P,=2
c =1 |
Task 2
P,=6] T
c§=2.4 — Y 100%
| | | R 90%
g 83.3%
0 1 2 3 4 5 6 time
¢, G _1 24 ?
U = + 90%
B P 2 6
o Schedulable!
= Question: is there a threshold U, ,such that 0

= When U< U, deadlines are met
= When U > U, ,deadlines are missed

Another Example
‘L (Rate-Monotonic Scheduling)

Task 1
P,=2
C,=1

Task 2

=0 | e s mm |
C,=2.4

= Question: isTr .
« When U< U, deadlines are me
= When U > U, ,deadlines are missed

A Conceptual View of
i Schedulability

. Utilization = Z—

l

@ Schedulable
@ Unschedulable

= Question: is eat old U, ,,,such that Task Set
= When U < Uz lines are met
= When¥> U, deadlin€s-are missed

A Conceptual View of
‘L Schedulability

. Utilization = Z—

@ Schedulable
d @ Unschedulable
@) ® o
@)
O © ® ©
® @)
O
@)
%) |E)
hedulab o
All green area (SC
A S S N A N (N A S N
= Modified Question: is there a threshold U, ,such that Task Set

= When U< U, deadlines are met
= When U > U, ,deadlines may or may not be missed

A Conceptual View of

‘L Schedulability

U< Ubound iS d

. Utilization = Z— o Schedulable sufficient but

z not necessary
@ Unschedulable schedulability

® condition

© ®
® © o © ®
° O
O ?
O
° lable)
All green ared (schedu ©
[S A A A O D O e

= Modified Question: is there a threshold U, ,such that Task Set

= When U< U, deadlines are met
= When U > U, ,deadlines may or may not be missed

A Conceptual View of
‘L Schedulability

Utilization = Zg
Equi a'ent B ~ P @ Schedulable
What- Questiop. e Unschedulable
S the joy, .
est utilj,
N Unschey
o o set?
O ® ©
® @)
?
o ° ble)
hedula 0
N S S S A A [A A N
= Modified Question: is there a threshold U, ,such that Task Set

= When U< U, deadlines are met
= When U > U, ,deadlines may or may not be missed

A Conceptual View of
‘L Schedulability

Utilization = ZQ
Equil,ale"t q; ~ P o Schedulable
y esti
Wha s the S e Unschedulable
(Calleq the
N N S S A N A N N A N
= Modified Question: is there a threshold U, ,such that Task Set

= When U< U, deadlines are met
= When U > U, ,deadlines may or may not be missed

i The Schedulability Condition

For n independent periodic tasks with periods equal to
deadlines, the utilization bound is:

U = n(Z% —1)

n—>o U-—>In2

