
Real-time Scheduling

Introduction to Real-Time

A Robotic Design Example
(Revisited)

 A robot has a camera that detects obstacles with probability 70%, a
bump sensor that detects imminent collisions with a probability of 99.9%
(when an obstacle is 1 inch away), and a cliff sensor that detects
imminent falls off a cliff with a probability of 99.9% (when the cliff is 1
inch away). The robot has breaks that can stop it within 0.1 second. The
mission is to deliver supplies from point A to point B, safely.
 What are safety-critical requirements?
 What are mission-critical (i.e., performance) requirements?
 What is a safe state?
 How to ensure well-formed dependencies?
 What is a safe speed for the robot?
 Is the algorithm that computes speed based on preferred arrival time and

route safety-critical or mission-critical?

The Schedulability Question:
Drive-by-Wire Example

 Consider a control system in an autonomous robot
 Navigation guidance is computed every 10 ms – wheel

positions adjusted accordingly (computing the adjustment
takes 4.5 ms of CPU time)

 Threats and obstacles are reassessed every 4 ms –
breaks adjusted accordingly (computing the adjustment
takes 2ms of CPU time)

 Optimal speed is computed every 15 ms – robot speed is
adjusted accordingly (computing the adjustment takes
0.45 ms)

 For safe operation, adjustments must always be
computed before the next sample is taken

 Is it possible to always compute all adjustments in
time?

Some Terminology
 Tasks, periods, arrival-time, deadline,

execution time, etc.

Time

Period, Pi

Task i

Take a sample Take the next sample

Compute adjustment

Must be done
Before next sample

Some Terminology
 Tasks, periods, arrival-time, deadline,

execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Period, Pi

Arrival of
Next invocation

Task i

Must be done
Before next sample

Some Terminology
 Tasks, periods, arrival-time, deadline,

execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Some Terminology
 Tasks, periods, arrival-time, deadline,

execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei
(Computation time, ci)

Some Terminology
 Tasks, periods, arrival-time, deadline,

execution time, etc.

Time

Arrival time, ai
(Release time, ri)

Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei
(Computation time, ci)

Start time, si Finish time, fi

Back to
Drive-by-Wire Example

 Find a schedule that makes sure all task
invocations meet their deadlines

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to
Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24  you are overutilized)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to
Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24  you are overutilized)
 Hint: Check if processor utilization > 100%

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Task Scheduling
 Decision #1: In what order should tasks be executed?

 Hand-crafted schedule (fill timeline by hand)
 Priority based schedule (assign priorities  schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?

Task Scheduling
 Decision #1: In what order should tasks be executed?

 Hand-crafted schedule (fill timeline by hand)
 Priority based schedule (assign priorities  schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority

Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

 Decision #2: Preemptive versus non-preemptive?
 Preemptive: Higher-priority tasks can interrupt lower-priority ones
 Non-preemptive: They can’t

In this example, will non-preemptive scheduling work?

Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
- Hint: Compare relative deadlines of tasks to execution times of others

 Decision #2: Preemptive versus non-preemptive
 Preemptive: Higher-priority tasks can interrupt lower-priority ones
 Non-preemptive: They can’t

Timeline
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Timeline
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Timeline
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation
a lower priority

Timeline
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation
a lower priority

Task Scheduling
 Decision #3: Static versus Dynamic priorities?

 Static: Instances of the same task have the same priority
 Dynamic: Instances of same task may have different priorities

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Dynamic priorities offer the designer more flexibility and
hence are more capable to meet deadlines

Interesting Questions
 What is the optimal dynamic priority scheduling

policy? (Optimal: meets all deadlines as long as
any other policy in its class can)
 Can it meet all deadlines as long as the processor is

not over-utilized?
 What is the optimal static priority scheduling

policy?
 When can it meet all deadlines?
 Can it meet all deadline as long as the processor is

not over-utilized?

Interesting Questions
 What is the optimal dynamic priority scheduling

policy? (Optimal: meets all deadlines as long as
any other policy in its class can)
 Can it meet all deadlines as long as the processor is

not over-utilized?
 What is the optimal static priority scheduling

policy?
 When can it meet all deadlines?
 Can it meet all deadline as long as the processor is

not over-utilized?

Utilization
Bounds

Main Results in Real-time
Scheduling of Periodic Tasks

Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality

Advanced: Earliest Deadline
First (EDF) Optimality Result

 EDF is the optimal dynamic priority scheduling
policy
 It can meet all deadlines whenever the processor

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

 If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2 HW1

Deadline
HW1

Deadline
HW2Ok?

Earliest Deadline First (EDF)
Optimality Result

 EDF is the optimal dynamic priority scheduling
policy
 It can meet all deadlines whenever the processor

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

 If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2HW1

Deadline
HW1

Deadline
HW2Non-EDF Ok  EDF OK!

When can EDF Meet
Deadlines?

 Consider a task set where:

 Imagine a policy that reserves for each task
i a fraction fi of each clock tick, where fi = Ci
/Pi

1
i i

i

P
C

Clock tick

Utilization Bound of EDF
 Imagine a policy that reserves for each task i a

fraction fi of each time unit, where fi = Ci /Pi

 This policy meets all deadlines, because within
each period Pi it reserves for task i a total time
 Time = fi Pi = (Ci / Pi) Pi = Ci (i.e., enough to finish)

Clock tick

Utilization Bound of EDF
 Pick any two execution chunks that are not in

EDF order and swap them

Utilization Bound of EDF
 Pick any two execution chunks that are not in

EDF order and swap them

 Still meets deadlines!

Utilization Bound of EDF
 Pick any two execution chunks that are not in

EDF order and swap them

 Still meets deadlines!
 Repeat swap until all in EDF order
 EDF meets deadlines

Rate Monotonic Scheduling

 Rate monotonic scheduling is the optimal
fixed-priority scheduling policy for periodic
tasks (with period = deadline).

The Worst-Case Scenario
 Consider the worst case where all tasks

arrive at the same time.

 If any fixed priority scheduling policy can
meet deadline, rate monotonic can!

Optimality of Rate Monotonic
 If any other policy can meet deadlines so

can RM

Policy X meets deadlines?

Optimality of Rate Monotonic
 If any other policy can meet deadlines so

can RM

Policy X meets deadlines?
 RM meets deadlines

Utilization Bounds
 Intuitively:

 The lower the processor utilization, U, the easier it is to
meet deadlines.

 The higher the processor utilization, U, the more
difficult it is to meet deadlines.

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3
01.1

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time
?

100%

0

U

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3
01.1

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time
?

100%

0

U

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3
01.1

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time

Missed deadline!

?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6
4.2

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time
?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6
4.2

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time
?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6
4.2

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time

Schedulable!

?

100%

0

U

83.3%
90%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6
4.2

2
1

2

2

1

1 
P
C

P
CU

0 1 2 3 4 5 6 time

Schedulable!

?

100%

0

U

83.3%
90%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines are missed


i i

i

P
C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines may or may not be missed

?


i i

i

P
C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines may or may not be missed

?

U < Ubound is a
sufficient but
not necessary
schedulability
condition


i i

i

P
C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines may or may not be missed

?


i i

i

P
C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met
 When U > Ubound deadlines may or may not be missed

?


i i

i

P
C

The Schedulability Condition






  12

1
nnU

2ln Un

For n independent periodic tasks with periods equal to
deadlines, the utilization bound is:

Done Today
Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality

