
Simplicity to Control
Complexity

Based on Slides by Professor Lui
Sha

2

An Architectural Pattern for
Combining Performance and
Robustness

Simple
High-assurance
(Fallback) Subsystem

Complex
High-performance
Subsystem

Output

Safety Check
and Fallback
Switch Logic

Better performance, but less reliable

Highly reliable, but lower performance

3

An Architectural Pattern for
Combining Performance and
Robustness

Other examples?

Reliability
 Reliability for a giving mission duration t,

R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where  is the failure rate.

tetR )(

Reliability
 Reliability for a giving mission duration t,

R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where  is the failure rate.

tetR )(
From queueing theory:
Probability of zero
independent arrivals in t
time units (Poisson
arrival process)

Reliability
 The most commonly used reliability function

is the exponential reliability function:

where  is the failure rate.

 Mean time to failure (MTTF) ?

tetR )(

Simple Reliability Modeling

 What is the reliability of a system that is
made of the above two components?
 Failure rate of first component: 1
 Failure rate of second component: 2

r1(t) r2(t)

Note: This system needs both components to function.

Simple Reliability Modeling

 Total failure rate = 1+ 2
 Mean time to failure = 1/(1+ 2)
 Total reliability:

r1(t) r2(t)

tetrtrtR)(
21

21)()()( 

Simple Reliability Modeling

 Total reliability?

r2(t)

r1(t)
Note: This system needs
at least one of the two
components to function.

Triple Modular Redundancy

r(t)

r(t)

r(t)

Note: This system needs
at least two of the three
components to function.

 Total reliability?

Triple Modular Redundancy
 Which case is TMR?

Triple Modular Redundancy
 Which case is TMR?

TMR has a lower reliability in the long
term. How come?

13

Which Side Would You Take?
 Improving the reliability of increasingly complex

software is a serious challenge. There are two
philosophical positions:
 The diversity camp: Diversity in crops resists diseases…

diversity in software improves reliability. The likelihood of
making the same mistakes decreases as the degree of
diversity increases. Don’t put all your eggs in one basket.

 The bullet-proof your basket camp: Concentrate all the
available resource to one version and do it right. Do-it-right-
the-first-time is the time honored approach to quality
products.

14

Software Development
Postulates

 In science we rely on facts and logic. Let’s begin with
well known observations in software development.
We make three postulates:
 P1: Complexity Breeds Bugs. Everything else being equal,

the more complex the software project is, the harder it is to
make it reliable.

 P2: All Bugs are Not Equal. You fix a bunch of obvious bugs
quickly, but finding and fixing the last few bugs is much
harder, if you can ever hunt them down.

 P3: All Budgets are Finite. There is only a finite amount of
effort (budget) that we can spend on any project.

15

Implications of the Postulates
 A reliability function in the form:

R(Effort, Complexity, t) = e-kC t/E

satisfies P1 and P2
 The Finite Budget Assumption implies

that diversity is not free. If we go for n
version diversity, we must divide the
available effort n-ways. This allows us
to compare different approaches fairly.

16

Implications of the Postulates
R(Effort, Complexity, t) = e-kC t/E

 Note: splitting the effort greatly reduces
reliability.

17

Analysis
Analysis shows that redundancy/diversity does not win. What are we
going to do??

???

R(Effort, Complexity, t) = e-kC t/E

Another Look at Redundancy:
Complexity Reduction

 Safety-critical versus performance
requirements

 Example: power steering

Another Look at Redundancy:
Complexity Reduction

 Power steering:
 Safety requirements: cannot lose control over

steering even when power is lost (must have
mechanical backup)

 Performance requirements: ease of steering

Analytic Redundancy and
Complexity Reduction

 Partial redundancy via simple backup that
meets only safety-critical requirements

21

An Architectural Pattern for
Combining Performance and
Robustness

Simple
High-assurance
(Fallback) Subsystem

Complex
High-performance
Subsystem

Output

Safety Check
and Fallback
Switch Logic

Better performance, but less reliable

Highly reliable, but lower performance

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component

22

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 1 year

23

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 15 years

24

Example
 Component with mean time to failure = 10 years.

Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
c) Using this component with a reduced complexity

backup (C = 0.1)
After 15 years

25

Example
 Component with mean time to failure = 10 years

(at unit complexity and unit budget). Compare
the reliability of:
a) Using this component alone
b) TMR using three versions of this component assuming

same total budget
After 1 year

26

Lessons Learned?

27

Lessons Learned
 More components/redundancy is not

always better
 When budget is finite, more components

means “spreading thinner”  lower
reliability

 Having a simple (i.e., low complexity) back-
up significantly improves reliability!

28

