
Real-time Synchronization
(Semaphores, Resources and Blocking)

Priority Inheritance
Priority Ceiling

Slack Resource Policy

The Problem
 Tasks have synchronization constraints

 Semaphores protect critical sections
 Blocking can cause a higher-priority task to wait on

a lower-priority one to unlock a resource
 Problem: In all previous derivations we assumed that a

task can only wait for higher-priority tasks not lower-
priority tasks

 Question
 What is the maximum amount of time a higher-priority

task can wait for a lower-priority task?
 How to account for that time in schedulability analysis?

Mutual Exclusion Constraints
 Tasks that lock/unlock the same semaphore are

said to have a mutual exclusion constraint

Lock S Unlock S

Lock S Unlock S

Critical sections
(Mutually exclusive)

Task 1

Task 2

Priority Inversion
 Locks and priorities may be at odds.

Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Preempt.

Priority Inversion
 Locks and priorities may be at odds.

Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Attempt to lock S
results in blocking

Preempt.

Priority
Inversion

Priority Inversion
 How to account for priority inversion?

High-priority task

Low-priority task

Lock S

Attempt to lock S
results in blocking

Preempt.

Unlock S

Lock S
Unlock S

Priority
Inversion

Unbounded Priority Inversion
 Consider the case below: a series of

intermediate priority tasks is delaying a
higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S
results in blocking

Unbounded Priority Inversion
 How to prevent unbounded priority

inversion?

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S
results in blocking

Priority Inheritance Protocol
 Let a task inherit the priority of any higher-

priority task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S
results in blocking

Lock S
Unlock S

Unlock S

Priority Inheritance Protocol
 Question: What is the longest time a task

can wait for lower-priority tasks?
 Let there be N tasks and M semaphores
 Let the largest critical section of task i be of

length Bi
 Answer: ?

Computing the Maximum
Priority Inversion Time

 Consider the instant when a high-priority task
that arrives.
 What is the most it can wait for lower priority ones?

Semaphore Queue Resource
1

Semaphore Queue Resource
2

Semaphore Queue Resource
M

If I am a task, priority
inversion occurs when
(a) Lower priority task holds a
resource I need (direct blocking)
(b) Lower priority task inherits a
higher priority than me because
it holds a resource the higher-
priority task needs (push-through
blocking)

Maximum Blocking Time
 If all critical sections are equal (of length B):

 Blocking time = B min (N, M)
(Why?)

 If they are not equal?

Maximum Blocking Time
 If all critical sections are equal (of length B):

 Blocking time = B min (N, M)
(Why?)

 If they are not equal
 Find the worst (maximum length) critical section

for each resource
 Add up the top min (N, M) sections in size

 The total priority inversion time for task i is
called Bi

Schedulability Test

)12(

,1,

/1

1







i
i

k k

k

i

i i
P
C

P
B

nii

Schedulability Test

)12(

,1,

/1

1







i
i

k k

k

i

i i
P
C

P
B

nii

Why do we have to test each task separately? Why not just one
utilization-based test like it used to?

Problem: Deadlock

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock occurs if two tasks locked two semaphores in
opposite order

Priority Ceiling Protocol
 Definition: The priority ceiling of a semaphore is

the highest priority of any task that can lock it
 A task that requests a lock Rk is denied if its

priority is not higher than the highest priority
ceiling of all currently locked semaphores (say it
belongs to semaphore Rh)
 The task is said to be blocked by the task holding lock
Rh

 A task inherits the priority of the top higher-
priority task it is blocking

Problem: Deadlock?

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?

Problem: Deadlock?

Lock R1

Lock R2: Denied because its priority
is not higher than ceiling of R1

Lock R2

Preemption

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?

Unlock R1
Unlock R2

Inherit higher priority

Priority Inheritance Protocol:
Maximum Blocking Time

Need Red
Need Blue

Need Yellow

Priority Ceiling Protocol:
Maximum Blocking Time

Need Yellow but
Priority is lower
Than Red ceiling

Need Blue but
Priority is lower
Than Red ceiling Need Red but

Priority is lower
Than Red ceiling

Done

Schedulability

 A task can be preempted by only one critical
section of a lower priority task (that is guarded
by a semaphore of equal or higher priority
ceiling). Let max length of such section be Bi

)12(

,1,

/1

1







i
i

k k

k

i

i i
P
C

P
B

nii

Slack Resource Policy

 Priority:
 Any static or dynamic policy (e.g., EDF, RM, …)

 Preemption Level
 Any fixed value that satisfies: If A arrives after B and Priority (A) >

Priority (B) then PreemptionLevel (A) > PreemptionLevel (B)
 Resource Ceiling

 Highest preemption level of all tasks that might access the resource
 System Ceiling

 Highest resource ceiling of all currently locked resources
 A task can preempt another if:

 It has the highest priority
 Its preemption level is higher than the system ceiling

Example: EDF
 Priority is proportional to the absolute deadline
 Preemption level is proportional to the relative

deadline (shoter  higher priority).
 Observe that:

 If A arrives after B and Priority (A) > Priority (B) then
PreemptionLevel (A) > PreemptionLevel (B)

B

A

Maximum Blocking Time
Priority Ceiling Protocol

Need Yellow but
Priority is lower
Than Red ceiling

Need Blue but
Priority is lower
Than Red ceiling Need Red but

Priority is lower
Than Red ceiling

Done

Maximum Blocking Time
Slack Resource PolicyCan’t preempt

Preemption level is not
higher than ceiling

