CS 425 / ECE 428
Distributed Systems
Fall 2018

Indranil Gupta (Indy)
Lecture 13: Snapshots

All slides © IG

Here’s a Snapshot

-
ikimedia cjmmons

Sommet de Paris
pour le soutien au peuple libyen
Samedi 19 mars 2011

AlA L 14011 LR

—

. i\:‘ott“ --- .- . / =

Distributed Snapshot

* More often, each country’s representative
1s sitting in their respective capital, and
sending messages to each other (say
emails).

 How do you calculate a “global snapshot”
in that distributed system?

 What does a “global snapshot” even
mean?

In the Cloud

 In a cloud: each application or service is running on
multiple servers

* Servers handling concurrent events and interacting with
each other

* The ability to obtain a “global photograph” of the system
is important
* Some uses of having a global picture of the system
— Checkpointing: can restart distributed application on failure

— Garbage collection of objects: objects at servers that don’t have
any other objects (at any servers) with pointers to them

— Deadlock detection: Useful in database transaction systems

— Termination of computation: Useful in batch computing systems
like Folding@Home, SETI@Home

What’s a Global Snapshot?

* Global Snapshot = Global State =

Individual state of each process in the distributed
system

|

Individual state of each communication channel in the
distributed system

» Capture the instantaneous state of each process

 And the instantaneous state of each communication
channel, i.e., messages in transit on the channels

Obvious First Solution

» Synchronize clocks of all processes
» Ask all processes to record their states at known time ¢
* Problems?

— Time synchronization always has error

* Your bank might inform you, “We lost the
state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

— Also, does not record the state of messages in the
channels

* Again: synchronization not required — causality is
enough!

o)

Cyj

Cji

p; [$1000,

Cij 100 1Phones]
lempty]
lempty]
Cji
Pj) [$600,
50 Androids

[Global Snapshot 0]

pi)IS701,

Cij 100 1Phones]
| [empty |
[$299, Order Android]
Cji
Pj) [$600,
50 Androids

[Global Snapshot 1]

Pi [$701,
100 1Phones]

Cyj

[$499, Order iPhone]
[$299, Order Android]

Cji
Pj) [$101,

50 Androids
[Global Snapshot 2]

p; 31200, 1 iPhone order from P},

Cij 100 1Phones]
| [empty]
[$299, Order Android]
Cji
Pj)[$101,
50 Androids

[Global Snapshot 3]

[

($299, Order Android),

(1 1Phone)
]

Cyj

p; 31200,
99 1Phones]

[empty]

Cji
Pj) [$101,

50 Androids
[Global Snapshot 4]

p; [$1200,

Cif 99 1Phones]
: [empty]
(1 1Phone)
] Cji
Pj) [$400, 1 Android order from Pi,
50 Androids

[Global Snapshot 5]

p: [$1200,

Cif 99 1Phones]
[empty]
[empty]
... and soon ...
Cji

Pj) [$400, 1 Android order from Pi,

50 Androids, 1 1Phone]
[Global Snapshot 6]

Moving from State to State

* Whenever an event happens anywhere in the
system, the global state changes

— Process receives message
— Process sends message
— Process takes a step
* State to state movement obeys causality

— Next: Causal algorithm for Global Snapshot
calculation

15

System Model

 Problem: Record a global snapshot (state for each process,
and state for each channel)
 System Model:
— N processes in the system

— There are two uni-directional communication channels between
each ordered process pair : Pj = Pi and Pi = Pj

— Communication channels are FIFO-ordered
 First in First out
— No failure
— All messages arrive intact, and are not duplicated
» Other papers later relaxed some of these assumptions

16

Requirements

* Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

 Each process is able to record its own state

— Process state: Application-defined state or, in the worst
case:

— its heap, registers, program counter, code, etc. (essentially
the coredump)

 Global state is collected in a distributed manner
* Any process may initiate the snapshot

— We’ll assume just one snapshot run for now

17

Chandy-Lamport Global Snapshot Algorithm

* First, Initiator Pi records its own state
« Initiator process creates special messages called “Marker” messages
— Not an application message, does not interfere with application messages

« forj=I to N excepti
Pi sends out a Marker message on outgoing

channel C;
* (N-1) channels

the incoming messages on each of
the incoming channels at Pi: C; (for j=1 to N except

i)

18

Chandy-Lamport Global Snapshot Algorithm (2)

Whenever a process Pi receives a Marker message on an incoming channel C;

« if (this 1s the first Marker Pi 1s seeing)

— Pirecords its own state first

— Marks the state of channel C;; as “empty”

— forj=1I to N except i

* Pisends out a Marker message on outgoing channel C;
the incoming messages on each of the incoming channels at Pi: C;,
(for j=1 to N except i and k)

 else // already seen a Marker message

— Mark the state of channel C,; as all the messages that have arrived on it

Cri
19

Chandy-Lamport Global Snapshot Algorithm (3)

The algorithm terminates when
« All processes have received a Marker
— To record their own state

« All processes have received a Marker on all the (V-
1) incoming channels at each

— To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

20

Pl

P2

P3

Example
4 B

® Instruction or Step

> Message

21

Pl

P2

P3

-\

B

P1 is Initiator:

Record local state S1,
Send out markers
Turn on recording o channels C, 1,

Time

S1, Record C,,, C;;

B D E
p — , S

Time

P2

[

P3 e —

« First Marker!

* Record own state as S3

 Mark C,;state as empty

e Turn on recording on other incoming C,;
 Send out Markers

Pl

P2

P3

S1, Record C,,, C;;

S

/7 G

Time

. S3
¢« Cpi=<>
 Record C,;

Pl

P2

P3

B

S1, Record C, ;€3

Duplicate Marker!
State of channel C;;,= <>

D E

S

Time

>

. S3
* Cp=<>
* Record C;

Pl

P2

P3

Sl Record CZJ—G#

C.

=< >

D E

v .

/ Time>
\

NN

C13 =
Record C,;

First Marker!

Record own state as S2
Mark C;, state as empty
Turn on recording on C;,
Send out Markers

Pl

P2

P3

S1, Record C,,+€;;

S

C =<>

D

A\

<

. S3
¢« Cpi=<>
 Record C,;

. S2
¢ Cy=<>
 Record C,,

S1, Record C,;5C;; Cs=<>

P1 4 B g . D b >
Time
o E G7 \ \ X
> o J >
P3 = \ .
.« S3 * 52 * ' Duplicate!
¢ C32 =<>) C]Z =< >

 Record C,;

* Duplicate!
* C,;=<message G>D >

S1, Reeord-C,-Cy, Cy=<>
P1 S W S — ¢ D /E <
Time
P E G . \ : R
| S\
——e : . >
P3 < e 2 \
¢ Cpp=<> Cp=<>

o C]3=<>

o Procsal O
 Record C,; =

C,;= <message G->D>
S1, Reeerd-C,;;C;; C,3 <~ /

B S D /E

Time

P2 W \\\\ \
P3 ,

‘ C32—<> C]2—<>
‘ C13:<> + RecordC
e« ReecordC,, o Duplicate!
e Cu=<>

Algorithm has Terminated C,, = <message G>D >

S1 Cy=<>
B /D /E
Time
P) E G X
P3 ~ @ J >

Collect the Global Snapshot Pieces C,, = <message GOD >

—<>
P1
M Time
: W
P3 S2 C,=<> : g
S3Cp3=<> " C,,=<>

C23=<>

Next

* Global Snapshot calculated by Chandy-Lamport algorithm is
causally correct

— What?

33

e Cut = time frontier at each process and at each channel

 Events at the process/channel that happen before the cut are “in
the cut”

— And happening after the cut are “out of the cut”

34

Consistent Cuts

Consistent Cut: a cut that obeys causality
* A cut Cis a consistent cut if and only if:
for (each pair of events e, f in the system)
— Such that event e 1s in the cut C, and if f — e (f happens-before ¢)
e Then: Event f is also in the cut C

35

Pl

P2

P3

Example

A B , ----b~_ E
- >
J /
I / .
i ! Tlme
/’—-_
— .
]
i
!
i
3
@ t J>

Consistent Cut

Inconsistent Cut
G =2 D, but only D i1s in cut

Our Global Snapshot Example ... C,,— <message GOD >

S1 Ca=<>
pg —eB ¢ ~ D 'F >
Time
P) E F G — S
P3 I. 2 ’, J >
. S3 . 332—,{/> (;]2:<>

... Is causally correct C, = <message G>D >

) q1 C‘j,] =<> //
\ ’ ,’/ ,/l
o 4 B C D /E)
""""" - Time
N\
\
Py E F G y \ R
/7 I \\
P \
e
7
,// 1 \
P3 //'/’ _ f. E - \‘\ J >
il ® S2
¢ S3

‘ e C,=<> (C,,=<>
e =< 32 12

Consistent Cut captured by our Global Snapshot Example «' C,,=<> "

In fact...

* Any run of the Chandy-Lamport Global Snapshot algorithm creates a
consistent cut

39

Chandy-Lamport Global Snapshot algorithm

creates a consistent cut

Let’s quickly look at the proof

*Let ¢; and ¢; be events occurring at Pi and Pj,
respectively such that

— ¢ 2 ¢ (e happens before €))
*The snapshot algorithm ensures that

if ¢; 1s in the cut then ¢; is also in the cut.
» That is: if ¢, 2 <Pj records its state>, then

— it must be true that ¢, = <Pi records its state>.

40

Chandy-Lamport Global Snapshot algorithm

creates a consistent cut

« ife; 2 <Pjrecords its state>, then it must be true
that e; = <Pi records its state>.

* By contradiction, suppose ¢; 2 <Pj records its state> and
<Pi records its state> > ¢;

* Consider the path of app messages (through other
processes) that go from ¢; 2 ¢;

* Due to FIFO ordering, markers on each link in above
path will precede regular app messages

* Thus, since <Pi records its state> = ¢; , it must be true
that Pj received a marker before e¢;

e Thus € 1s not in the cut => contradiction

41

Next

« What is the Chandy-Lamport algorithm used for?

42

“Correctness” in Distributed Systems

* (Can be seen in two ways
* Liveness and Safety
* Often confused — it’s important to distinguish from each other

43

Liveness

* Liveness = guarantee that something good will happen, eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

44

Liveness: Examples

Liveness = guarantee that something good will happen,
eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

Examples in Real World

— Guarantee that “at least one of the atheletes in the 100m final
will win gold” is liveness

— A criminal will eventually be jailed
Examples in a Distributed System
— Distributed computation: Guarantee that it will terminate

— “Completeness” in failure detectors: every failure 1s
eventually detected by some non-faulty process

— In Consensus: All processes eventually decide on a value

45

« Safety = guarantee that something bad will never happen

46

Safety: Examples

e Safety = guarantee that something bad will never happen
 Examples in Real World

— A peace treaty between two nations provides safety

« War will never happen

— An innocent person will never be jailed
 Examples in a Distributed System

— There is no deadlock in a distributed transaction system

— No object is orphaned in a distributed object system

— “Accuracy” in failure detectors

— In Consensus: No two processes decide on different
values 47

Can’t we Guarantee both?

* Can be difficult to satisfy both liveness and safety
in an asynchronous distributed system!

— Failure Detector: Completeness (Liveness) and
Accuracy (Safety) cannot both be guaranteed by
a failure detector in an asynchronous distributed
system

— Consensus: Decisions (Liveness) and correct
decisions (Safety) cannot both be guaranteed by
any consensus protocol in an asynchronous
distributed system

— Very difficult for legal systems (anywhere in
the world) to guarantee that all criminals are
jailed (Liveness) and no innocents are jailed
(Safety) 48

In the language of Global States

* Recall that a distributed system moves from one global state to
another global state, via causal steps

* Liveness w.r.t. a property Pr in a given state S means

— S satisfies Pr, or there is some causal path of global states from S to S’
where S’ satisfies Pr

* Safety w.r.t. a property Pr in a given state S means
S satisfies Pr, and all global states S’ reachable from S also satisfy Pr

49

Using Global Snapshot Algorithm

 Chandy-Lamport algorithm can be used to detect global properties that
are stable

— Stable = once true, stays true forever afterwards
e Stable Liveness examples
— Computation has terminated
« Stable Non-Safety examples
— There is a deadlock
— An object is orphaned (no pointers point to it)
« All stable global properties can be detected using

the Chandy-Lamport algorithm

* Due to its causal correctness 50

Summary

« The ability to calculate global snapshots in a
distributed system is very important

* But don’t want to interrupt running distributed
application

e Chandy-Lamport algorithm calculates global
snapshot

* Obeys causality (creates a consistent cut)
* Can be used to detect stable global properties
« Safety vs. Liveness

51

Announcements

e Midterm next Tuesday (10/16)

* Locations:
— DCL 1320: if your last name starts with A-L

— 1GH-100: 1f your last name starts with M-Z
* 100 Gregory Hall (810 S. Wright St., Urbana)

* Material through lecture 12 (Time and Ordering)

52

Announcements (2)

e No lecture this Thursday 10/11
« BUT

— View Four lecture videos on website (included in
syllabus, though not midterm)

— Solve rest of Practice Midterm

53

