
CS 425 / ECE 428
Distributed Systems

Fall 2018
Indranil Gupta (Indy)

Lecture 6: Failure Detection and
Membership, Grids

All slides © IG1

• You’ve been put in charge of a datacenter, and your
manager has told you, �Oh no! We don�t have any failures
in our datacenter!�

• Do you believe him/her?

• What would be your first responsibility?
• Build a failure detector
• What are some things that could go wrong if you didn�t do

this?

A Challenge

2

… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm

3

• You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and
report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects
failures and reports to your workstation.

Which is more preferable, and why?

To build a failure detector

4

5

Target Settings

• Process �group�-based systems
– Clouds/Datacenters
– Replicated servers
– Distributed databases

• Fail-stop (crash) process failures

6

Group Membership Service
Application Queries

e.g., gossip, overlays,
DHT�s, etc.

Membership
Protocol

Group
Membership List

joins, leaves, failures
of members

Unreliable
Communication

Application Process pi

Membership List

7

Two sub-protocols

Dissemination
Failure Detector

Application Process pi
Group

Membership List

Unreliable
Communication

•Complete list all the time (Strongly consistent)
•Virtual synchrony

•Almost-Complete list (Weakly consistent)
•Gossip-style, SWIM, …

•Or Partial-random list (other systems)
•SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

pj

8

Large Group: Scalability A Goal
this is us (pi)

Unreliable Communication
Network

1000�s of processes

Process Group
“Members”

9

pjI pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

Next
• How do you design a group membership

protocol?

10

11

I. pj crashes
• Nothing we can do about it!
• A frequent occurrence
• Common case rather than exception
• Frequency goes up linearly with size of

datacenter

12

II. Distributed Failure Detectors:
Desirable Properties

• Completeness = each failure is detected
• Accuracy = there is no mistaken detection
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

13

Distributed Failure Detectors:
Properties

• Completeness
• Accuracy
• Speed

– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Impossible together in
lossy networks [Chandra
and Toueg]

If possible, then can
solve consensus! (but
consensus is known to be
unsolvable in
asynchronous systems)

14

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed

Partial/Probabilistic
guarantee

15

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed

Partial/Probabilistic
guarantee

Time until some
process detects the failure

16

What Real Failure Detectors Prefer

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guaranteed

Partial/Probabilistic
guarantee

Time until some
process detects the failure

No bottlenecks/single
failure point

17

Failure Detector Properties
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

In spite of
arbitrary simultaneous
process failures

18

Centralized Heartbeating

…
pi, Heartbeat Seq. l++

pi L Hotspot

pj •Heartbeats sent periodically
•If heartbeat not received from pi within
timeout, mark pi as failed

19

Ring Heartbeating

pi, Heartbeat Seq. l++
L Unpredictable on
simultaneous multiple

failures
pi

……

pj

20

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

J Equal load per member
L Single hb loss à false

detection
pi

pj

Next
• How do we increase the robustness of all-to-all

heartbeating?

21

22

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

J Good accuracy
propertiespi

23

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip their membership
list: pick random nodes, send it list

•On receipt, it is merged with local
membership list

•When an entry times out, member is marked
as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

24

Gossip-Style Failure Detection
• If the heartbeat has not increased for more than

Tfail seconds,
the member is considered failed

• And after a further Tcleanup seconds, it will
delete the member from the list

• Why an additional timeout? Why not delete
right away?

25

• What if an entry pointing to a failed node is
deleted right after Tfail (=24) seconds?

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

Gossip-Style Failure Detection

26

Analysis/Discussion
• Well-known result: a gossip takes O(log(N)) time to propagate.
• So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to

propagate.
• So: N heartbeats take:

– O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)

– O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)
– What about O(k) bandwidth?

• What happens if gossip period Tgossip is decreased?
• What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased?
• Tradeoff: False positive rate vs. detection time vs. bandwidth

Next
• So, is this the best we can do? What is the best

we can do?

27

28

Failure Detector Properties …
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

29

…Are application-defined Requirements
• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always

Probability PM(T)
T time units

30

• Completeness
• Accuracy
• Speed
– Time to first detection of a failure

• Scale
– Equal Load on each member
– Network Message Load

Guarantee always

Probability PM(T)
T time units

N*L: Compare this across protocols

…Are application-defined Requirements

31

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

pi Every T units

L=N/T

32

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

pi

Every tg units
=gossip period,
send O(N) gossip
message

T=logN * tg
L=N/tg=N*logN/T

• Worst case load L* per member in the group
(messages per second)
– as a function of T, PM(T), N
– Independent Message Loss probability pml

•

33

What’s the Best/Optimal we can do?

T
TPM
pml

1
.

)log(
))(log(

L*=

34

Heartbeating
• Optimal L is independent of N (!)
• All-to-all and gossip-based: sub-optimal

• L=O(N/T)
• try to achieve simultaneous detection at all processes
• fail to distinguish Failure Detection and Dissemination

components
ÜCan we reach this bound?
ÜKey:

Separate the two components
Use a non heartbeat-based Failure Detection Component

Next
• Is there a better failure detector?

35

36

SWIM Failure Detector Protocol

Protocol period
= T� time units

X
K random
processes

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

37

• Prob. of being pinged in T’=

• E[T] =

• Completeness: Any alive member detects failure
– Eventually
– By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
-e
e

11 1)11(1 -- -=-- e
N

N

38

Accuracy, Load

• PM(T) is exponential in -K. Also depends on pml (and
pf)
– See paper

• for up to 15 % loss rates28
*
<

L
L 8

*
][
<

L
LE

39

SWIM Failure Detector
Parameter SWIM

First Detection Time
• Expected periods

• Constant (independent of group size)

Process Load • Constant per period
• < 8 L* for 15% loss

False Positive Rate • Tunable (via K)
• Falls exponentially as load is scaled

Completeness • Deterministic time-bounded
• Within O(log(N)) periods w.h.p.

úû
ù

êë
é
-1e
e

40

Time-bounded Completeness
• Key: select each membership element once as a

ping target in a traversal
– Round-robin pinging
– Random permutation of list after each traversal

• Each failure is detected in worst case 2N-1
(local) protocol periods

• Preserves FD properties

41

SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
• False Positive Rate
• Message Loss Rate

Heartbeating

Heartbeating

Next
• How do failure detectors fit into the big picture

of a group membership protocol?
• What are the missing blocks?

42

43

pjI pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

44

Dissemination Options
• Multicast (Hardware / IP)
– unreliable
– multiple simultaneous multicasts

• Point-to-point (TCP / UDP)
– expensive

• Zero extra messages: Piggyback on Failure
Detector messages
– Infection-style Dissemination

45

Infection-style Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

Piggybacked
membership
information

K random
processes

46

Infection-style Dissemination
• Epidemic/Gossip style dissemination
– After protocol periods, processes would not

have heard about an update
• Maintain a buffer of recently joined/evicted processes
– Piggyback from this buffer
– Prefer recent updates

• Buffer elements are garbage collected after a while
– After protocol periods, i.e., once they’ve propagated

through the system; this defines weak consistency
)log(. Nl

)log(. Nl

€

−(2λ−2)N

47

Suspicion Mechanism
• False detections, due to
– Perturbed processes
– Packet losses, e.g., from congestion

• Indirect pinging may not solve the problem
• Key: suspect a process before declaring it as

failed in the group

48

Suspicion Mechanism
Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn (Suspect pj)

Dissmn (Alive pj) Dissmn (Failed pj)

FD:: pi ping failed

Dissm
n::(S

uspect pj)
Time out

FD::pi ping success

Dissm
n::(A

live pj)

49

Suspicion Mechanism
• Distinguish multiple suspicions of a process
– Per-process incarnation number
– Inc # for pi can be incremented only by pi

• e.g., when it receives a (Suspect, pi) message

– Somewhat similar to DSDV (routing protocol in ad-hoc nets)

• Higher inc# notifications over-ride lower inc#�s
• Within an inc#: (Suspect inc #) > (Alive, inc #)
• (Failed, inc #) overrides everything else

50

SWIM In Industry
• First used in Oasis/CoralCDN
• Implemented open-source by Hashicorp Inc.
– Called “Serf”
– Later “Consul”

• Today: Uber implemented it, uses it for failure detection
in their infrastructure
– See “ringpop” system

51

Wrap Up
• Failures the norm, not the exception in datacenters
• Every distributed system uses a failure detector
• Many distributed systems use a membership service

• Ring failure detection underlies
– IBM SP2 and many other similar clusters/machines

• Gossip-style failure detection underlies
– Amazon EC2/S3 (rumored!)

Grid Computing

52

�A Cloudy History of Time�

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012

53

�A Cloudy History of Time�

1940
1950

1960

1970

1980

1990

2000

2012 CloudsGrids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%,
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168,

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day

54

Example: Rapid Atmospheric Modeling System,
ColoState U

• Hurricane Georges, 17 days in Sept 1998
– �RAMS modeled the mesoscale convective complex that

dropped so much rain, in good agreement with recorded data�
– Used 5 km spacing instead of the usual 10 km
– Ran on 256+ processors

• Computation-intenstive computing (or HPC = high
performance computing)

• Can one run such a program without access to a
supercomputer?

55

Distributed Computing Resources
Wisconsin

MIT NCSA

56

An Application Coded by a Physicist
Job 0

Job 2
Job 1

Job 3

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

Jobs 1 and 2 can
be concurrent

57

An Application Coded by a Physicist

Job 2

Output files of Job 0
Input to Job 2

Output files of Job 2
Input to Job 3

May take several hours/days
4 stages of a job

Init
Stage in
Execute
Stage out
Publish

Computation Intensive,
so Massively Parallel

Several GBs

58

Scheduling Problem

MIT NCSA

Job 0
Job 2Job 1

Job 3

Wisconsin

59

2-level Scheduling Infrastructure

60

Job 0
Job 2Job 1

Job 3

MIT

HTCondor Protocol

NCSAGlobus Protocol

Wisconsin

60Some other intra-site protocol

Intra-site Protocol

Job 0

Job 3Wisconsin
HTCondor Protocol

Internal Allocation & Scheduling
Monitoring
Distribution and Publishing of Files

61

Condor (now HTCondor)
• High-throughput computing system from U. Wisconsin Madison
• Belongs to a class of “Cycle-scavenging” systems

– SETI@Home and Folding@Home are other systems in this category

Such systems
• Run on a lot of workstations
• When workstation is free, ask site’s central server (or Globus) for tasks
• If user hits a keystroke or mouse click, stop task

– Either kill task or ask server to reschedule task
• Can also run on dedicated machines

62

Inter-site Protocol

Job 0

Job 2
Job 1

Job 3
Wisconsin

MIT NCSA
Internal structure of different

sites invisible to Globus

External Allocation & Scheduling
Stage in & Stage out of Files 63

Globus Protocol

Globus
• Globus Alliance involves universities, national US research labs, and some

companies
• Standardized several things, especially software tools
• Separately, but related: Open Grid Forum
• Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/

64

http://toolkit.globus.org/toolkit/

Globus Toolkit
• Open-source
• Consists of several components

– GridFTP: Wide-area transfer of bulk data
– GRAM5 (Grid Resource Allocation Manager): submit, locate, cancel, and

manage jobs
• Not a scheduler
• Globus communicates with the schedulers in intra-site protocols like HTCondor

or Portable Batch System (PBS)
– RLS (Replica Location Service): Naming service that translates from a

file/dir name to a target location (or another file/dir name)
– Libraries like XIO to provide a standard API for all Grid IO functionalities
– Grid Security Infrastructure (GSI)

65

Security Issues
• Important in Grids because they are federated, i.e., no single entity controls the

entire infrastructure

• Single sign-on: collective job set should require once-only user authentication
• Mapping to local security mechanisms: some sites use Kerberos, others using Unix
• Delegation: credentials to access resources inherited by subcomputations, e.g., job 0

to job 1
• Community authorization: e.g., third-party authentication

• These are also important in clouds, but less so because clouds are typically run
under a central control

• In clouds the focus is on failures, scale, on-demand nature

66

Summary
• Grid computing focuses on computation-intensive computing

(HPC)
• Though often federated, architecture and key concepts have a

lot in common with that of clouds
• Are Grids/HPC converging towards clouds?

– E.g., Compare OpenStack and Globus

67

Announcements
• MP1: Due this Sunday, demos Monday
– VMs distributed: see Piazza
– Demo signup sheet: soon on Piazza
– Demo details: see Piazza
• Make sure you print individual and total linecounts

• Check Piazza often! It’s where all the
announcements are at!

68

