
CS 425 / ECE 428 
Distributed Systems

Fall 2020
Indranil Gupta (Indy)

Lecture 22: Stream Processing, Graph Processing

All slides © IG



• Why Stream Processing
• Storm

Stream Processing: What We’ll Cover



• Large amounts of data => Need for real-time views of 
data
• Social network trends, e.g., Twitter real-time search
• Website statistics, e.g., Google Analytics
• Intrusion detection systems, e.g., in most datacenters

• Process large amounts of data
• With latencies of few seconds
• With high throughput

Stream Processing Challenge



• Batch Processing => Need to wait for entire computation 
on large dataset to complete

• Not intended for long-running stream-processing

MapReduce?



Which one of these is NOT a stream processing job?

A) Uber
Calculating surge prices

B) LinkedIn
Aggregating updates into one email

C) Netflix
Understanding user behavior to improve personalization

D) TripAdvisor
Calculating earnings per day & fraud detection

E) All of them 
F) None of them à all of them are stream processing jobs!

[https://www.youtube.com/watch?v=YUBPimFvcN4]

[http://www.vldb.org/pvldb/vol10/p1634-
noghabi.pdf]

[https://www.youtube.com/watch?v=p8qSWE_nAAE]

[https://www.youtube.com/watch?v=KQ5OnL2hMBY]



• Apache Project 
• http://storm.apache.org/
• Highly active JVM project
• Multiple languages supported via API

• Python, Ruby, etc.

• Used by over 30 companies including
• Twitter: For personalization, search
• Flipboard: For generating custom feeds
• Weather Channel, WebMD, etc.

Enter Storm

http://storm.apache.org/


• Tuples
• Streams
• Spouts
• Bolts
• Topologies

Storm Components



• An ordered list of elements
• E.g., <tweeter, tweet>

• E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>
• E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

• E.g., <URL, clicker-IP, date, time>
• E.g., <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>
• E.g., <coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>

Tuple

Tuple



• Sequence of tuples
• Potentially unbounded in number of tuples

• Social network example:
• <“Miley Cyrus”, “Hey! Here’s my new song!”>, 

<“Justin Bieber”, “Hey! Here’s MY new song!”>, 
<“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, …

• Website example:
• <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>, <coursera.org, 

101.102.103.105, 4/4/2014, 10:35:42>, …

Stream

Tuple Tuple Tuple



• A Storm entity (process) that is a source of streams
• Often reads from a crawler or DB

Spout

Tuple Tuple Tuple

Tuple
Tuple

Tuple



• A Storm entity (process) that 
• Processes input streams
• Outputs more streams for other bolts

Bolt



• A directed graph of spouts and bolts (and output bolts)
• Corresponds to a Storm “application”

Topology



• Can have cycles if the application
requires it

Topology



• Operations that can be performed
• Filter: forward only tuples which satisfy a condition
• Joins: When receiving two streams A and B, output all pairs 

(A,B) which satisfy a condition
• Apply/transform: Modify each tuple according to a function
• And many others

• But bolts need to process a lot of data
• Need to make them fast

Bolts come in many Flavors



• Have multiple processes (“tasks”) constitute a bolt
• Incoming streams split among the tasks
• Typically each incoming tuple goes to one task in the bolt

• Decided by “Grouping strategy”

• Three types of grouping are popular

Parallelizing Bolts



• Shuffle Grouping
• Streams are distributed evenly among the bolt’s tasks
• Round-robin fashion

Grouping 



• Fields Grouping
• Group a stream by a subset of its fields
• E.g., All tweets where twitter username starts with [A-H,a-h,0-3] go to task 1, tweets 

starting with [I-Q,i-q,4-6]go to task 2, tweets starting with [R-Z,r-z,7-9] go to task 3

Grouping 

[A-H,a-h,0-3]

[I-Q,i-q,4-6]

[R-Z,r-z,7-9]



• All Grouping
• All tasks of bolt receive all input tuples

Grouping 



• Master node
• Runs a daemon called Nimbus
• Responsible for 

• Distributing code around cluster
• Assigning tasks to machines
• Monitoring for failures of machines

• Worker node
• Runs on a machine (server)
• Runs a daemon called Supervisor
• Listens for work assigned to its machines
• Runs “Executors”(which contain groups of tasks)

• Zookeeper
• Coordinates Nimbus and Supervisors communication
• All state of Supervisor and Nimbus is kept here

Storm Cluster

Nimbus

Job Submission

ZK Cluster

W1 W2 W3 W4

Supervisor

W1 W2 W3 W4

Supervisor

W
or

ke
r N

od
es



• A tuple is considered failed when its topology (graph) of resulting tuples fails to 
be fully processed within a specified timeout

• Anchoring: Anchor an output to one or more input tuples
• Failure of one tuple causes one or more tuples to replayed

Failures



• Emit(tuple, output)
• Emits an output tuple, perhaps anchored on an input tuple (first argument)

• Ack(tuple)
• Acknowledge that you (bolt) finished processing a tuple

• Fail(tuple)
• Immediately fail the spout tuple at the root of tuple topology if there is an 

exception from the database, etc.
• Must remember to ack/fail each tuple

• Each tuple consumes memory. Failure to do so results in memory leaks.

API For Fault-Tolerance (OutputCollector)



Twitter’s Heron System

• Fixes the inefficiencies of Storm’s acking mechanism (among other things)
• Uses backpressure: a congested downstream tuple will ask upstream tuples 

to slow or stop sending tuples
1. TCP Backpressure: uses TCP windowing mechanism to propagate 
backpressure
2. Spout Backpressure: node stops reading from its upstream spouts
3. Stage by Stage Backpressure: think of the topology as stage-based, and 
propagate back via stages
• Use:

• Spout+TCP, or
• Stage by Stage + TCP

• Beats Storm throughput handily (see Heron paper)



• Processing data in real-time a big requirement today
• Storm 

• And other sister systems, e.g., Spark Streaming, Heron

• Parallelism
• Application topologies
• Fault-tolerance

Summary: Stream Processing



• Distributed Graph Processing
• Google’s Pregel system

• Inspiration for many newer graph processing 
systems: Piccolo, Giraph, GraphLab, 
PowerGraph, LFGraph, X-Stream, etc.

Graph Processing: What We’ll Cover



• Large graphs are all around us
• Internet Graph: vertices are routers/switches and edges 

are links
• World Wide Web: vertices are webpages, and edges are 

URL links on a webpage pointing to another webpage
• Called “Directed” graph as edges are uni-directional

• Social graphs: Facebook, Twitter, LinkedIn
• Biological graphs: Brain neurons, DNA interaction 

graphs, ecosystem graphs, etc.

Lots of Graphs

Source: Wikimedia Commons, Wikipedia



• Need to derive properties from these graphs
• Need to summarize these graphs into statistics
• E.g., find shortest paths between pairs of vertices

• Internet (for routing) 
• LinkedIn (degrees of separation)

• E.g., do matching 
• Dating graphs in match.com (for better dates)

• PageRank
• Web Graphs
• Google search, Bing search, Yahoo search: all rely on this

• And many (many) other examples!

Graph Processing Operations



• Because these graphs are large!
• Human social network has 100s Millions of vertices and 

Billions of edges
• WWW has Millions of vertices and edges

• Hard to store the entire graph on one server and 
process it
• On one beefy server: may be slow, or may be very 

expensive (performance to cost ratio very low)
• Use distributed cluster/cloud!

Why Hard?



• Works in iterations
• Each vertex assigned a value
• In each iteration, each vertex:

1. Gather: Gathers values from its immediate neighbors 
(vertices who join it directly with an edge). E.g., @A: 
BàA, CàA, DàA,…

2. Apply: Does some computation using its own value and its 
neighbors values. 

3. Scatter: Updates its new value and sends it out to its 
neighboring vertices. E.g., AàB, C, D, E

• Graph processing terminates after: i) fixed iterations, or ii) 
vertices stop changing values

Typical Graph Processing Application

A

B
C

D
E



• Multi-stage Hadoop
• Each stage == 1 graph iteration
• Assign vertex ids as keys in the reduce phase
J Well-known
L At the end of every stage, transfer all vertices over 

network (to neighbor vertices)
L All vertex values written to HDFS (file system)
L Very slow!

Hadoop/MapReduce to the Rescue?



• “Think like a vertex”
• Originally by Valiant (1990)

Bulk Synchronous Parallel Model

Source: http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

http://en.wikipedia.org/wiki/Bulk_synchronous_parallel


• “Think like a vertex”
• Assign each vertex to one server
• Each server thus gets a subset of vertices
• In each iteration, each server performs Gather-Apply-Scatter 

for all its assigned vertices
• Gather: get all neighboring vertices’ values

• Apply: compute own new value from own old value and gathered 
neighbors’ values

• Scatter: send own new value to neighboring vertices

Basic Distributed Graph Processing

A

B
C

D
E



• How to decide which server a given vertex is 
assigned to?

• Different options
• Hash-based: Hash(vertex id) modulo number of servers

• Remember consistent hashing from P2P systems?!
• Locality-based: Assign vertices with more neighbors to the 

same server as its neighbors
• Reduces server to server communication volume after each iteration
• Need to be careful: some “intelligent” locality-based schemes may 

take up a lot of upfront time and may not give sufficient benefits!

Assigning Vertices



• Pregel uses the master/worker model
• Master (one server)

• Maintains list of worker servers
• Monitors workers; restarts them on failure
• Provides Web-UI monitoring tool of job progress

• Worker (rest of the servers)
• Processes its vertices
• Communicates with the other workers

• Persistent data is stored as files on a distributed storage system 
(such as GFS or BigTable)

• Temporary data is stored on local disk

Pregel System By Google



1. Many copies of the program begin executing on a cluster

2. The master assigns a partition of input (vertices) to each worker
• Each worker loads the vertices and marks them as active

3. The master instructs each worker to perform a iteration
• Each worker loops through its active vertices & computes for each vertex

• Messages can be sent whenever, but need to be delivered before the end of the iteration (i.e., the 
barrier)

• When all workers reach iteration barrier, master starts next iteration

4. Computation halts when, in some iteration: no vertices are active and when no messages 
are in transit

5. Master instructs each worker to save its portion of the graph

Pregel Execution



• Checkpointing
• Periodically, master instructs the workers to save state of their partitions to 

persistent storage
• e.g., Vertex values, edge values, incoming messages

• Failure detection 
• Using periodic “ping” messages from master à worker

• Recovery
• The master reassigns graph partitions to the currently available workers

• The workers all reload their partition state from most recent available 
checkpoint

Fault-Tolerance in Pregel



• Shortest paths from one vertex to all vertices
• SSSP: “Single Source Shortest Path”

• On 1 Billion vertex graph (tree)
• 50 workers: 180 seconds
• 800 workers: 20 seconds

• 50 B vertices on 800 workers: 700 seconds (~12 minutes)
• Pretty Fast!

How Fast Is It?



• Lots of (large) graphs around us
• Need to process these
• MapReduce not a good match
• Distributed Graph Processing systems: Pregel by Google
• Many follow-up systems

• Piccolo, Giraph: Pregel-like
• GraphLab, PowerGraph, LFGraph, X-Stream: more 

advanced

Summary: Graph Processing


