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Introduction



What is Deep Learning?

Image Source:  Google Images



300 hours of video / minute

Why do we need DL accelerators?

● DL models essentially comprise of compute intensive operations like matrix multiplication, convolution, 

FFT etc.

● Input data for these models is usually of the order of GBs

● Large amount of computation over massive amounts of data

● CPUs support computations spanning all kinds of applications, hence they are bound to be slower when 

compared to an application specific hardware

● CPUs are sophisticated due to their need to optimize control flow (branch prediction, speculation etc.) 

while Deep Learning barely has any control flow

● Energy consumption can be minimized with specialization

350M images / day350k tweets / minute

Sources:  Twitter Facebook Youtube

http://www.internetlivestats.com/twitter-statistics/
https://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
http://videonitch.com/2017/12/13/36-mind-blowing-youtube-facts-figures-statistics-2017-re-post/


A Primer on Neural Networks

Matrix Multiplication



Tensor Processing Unit (Google)



Tensor Processing Unit [TPU]

● Developed by Google to accelerate neural network computations

● Production-ready co-processor connected to host via PCIe

● Powers many of Google’s services like Translate, Search, Photos, Gmail etc.

● Why not GPUs?

○ GPUs don’t meet the latency requirements for performing inference

○ GPUs tend to be underutilized for inference due to small batch sizes

○ GPUs are still relatively general-purpose

● Host sends instructions to TPU rather than the TPU fetching it itself

● “TPU closer in spirit to a Floating Point Unit rather than a GPU” 



TPU Architecture

● Host sends instructions over PCIe bus into the 

instruction buffer

● Matrix Multiply Unit (MMU) 

○ “heart” of TPU

○ 256x256 8-bit MACs

● Accumulators

○ aggregate partial sums

● Weight Memory (WM)

○ off-chip DRAM - 8 GB

● Weight FIFO (WFIFO)

○ on-chip fetcher to read from WM

● Unified Buffer (UB)

○  on-chip for intermediate values
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MMU implemented as a systolic array

Multiplying an input vector by a 
weight matrix with a systolic array
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TPU ISA

● CISC instructions (average CPI = 10 to 20 cycles)

● 12 instructions 

○ Read_Host_Memory: reads data from host memory into Unified Buffer

○ Read_Weights: reads weights from Weights Memory into Weight FIFO

○ MatrixMultiply/Convolve: perform matmul/convolution on data from UB and WM and store into 

Accumulators

■ B X 256 input and 256 X 256 weight => B X 256 output in B cycles (pipelined)

○ Activate: apply activation function on inputs from Accumulator and store into Unified Buffer

○ Write_Host_Memory: writes data from Unified Buffer into host memory

● Software stack - application code to be run on TPU written in Tensorflow and compiled into an API which can 

be run on TPU (or even GPU)



Evaluation

● Performance comparison based on predictions per second 

on common DL workloads

○ overpowers GPUs massively for CNNs

○ performs reasonably well than GPUs for MLPs

○ performs close to GPUs for LSTMs

● Good

○ programmability

○ production ready

● Bad

○ converts convolution into matmul which may not be 

most optimal

○ no direct support for sparsity



Nvidia Tesla V100

● Tensor cores

○ programmable matrix-multiply-and-accumulate units

○ 8 cores/SM => total = 640 cores

○ input - 4x4 matrices

■ A,B must be FP16

■ C,D can be FP16/FP32

● Exposed as Warp-level matmul operation in CUDA 9

● Specialized matrix load/multiply/accumulate/store operations

● Part of multi GPU system optimized using NvLink interconnect and High 

Bandwidth Memory



Cloud TPU

● Part of Google Cloud

● Each node comprises of 4 chips

● 2 “tensor cores“ per chip

○ each core has scalar, vector and matrix units 

(MXU)

○  8/16 GB on-chip HBM per core

● 8 cores per cloud TPU node coupled with high 

bandwidth interconnect

● TPU Estimator APIs used to generate tensorflow 

computation graph, which is sent over gRPC and 

Just In Time compiled onto the cloud TPU node

TPU chip (v2 and v3) as part of cloud TPU node 



Eyeriss (MIT)



Convolutional Neural Networks

● Each convolution layer identifies certain fine grained features from the input image, aggregating over 

features from previous layers

● Very often there are certain optional layers in between CONV layers such as NORM/POOL layers to 

reduce the range/size of input values

● Convolutions account for more than 90% of overall computation, dominating runtime and energy 

consumption 



2D Convolution operation

● 2D convolution is a set of multiply and accumulate operations of the kernel matrix (also known as filter) and 

the input image feature map by sliding the filter over the image

Image Source: Understanding Convolutional Layers in Convolutional Neural Networks (CNNs)

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html


Multi-channel input with multi-channel filters

● Each filter and fmap have C channels -> the 

application of a filter on an input fmap across C 

channels results in one cell of the output fmap

● Rest of the cells of the output fmap are obtained 

by sliding the filter over the input fmap producing 

one channel of the output fmap

● Application of M such filters results in a single M 

channeled output fmap with as many channels as 

the number of filters

● Previous steps are batched over multiple input 

fmaps resulting in multiple output fmaps



Things to note

● Operations exhibit high parallelism
○ High throughput possible

● Memory access is the bottleneck
● Lot of scope for data reuse

200x

WORST CASE: all memory R/W are DRAM accesses

Example: AlexNet [NIPS 2012] -> 724M MACs = 2896M DRAM accesses required

1x



Memory access is the bottleneck



Memory access is the bottleneck

1

Opportunities:
1. Reuse filters/fmap reducing DRAM reads



Memory access is the bottleneck

1

Opportunities:
1. Reuse filters/fmap reducing DRAM reads
2. Partial sum accumulation does not have to access DRAM

2



Types of data reuse in DNN



Spatial Architecture for DNN

Efficient Data Reuse
Distributed local storage (RF)

Inter PE communication 
Sharing among regions of PEs



Data movement is expensive



How to exploit data reuse 
and local accumulation 

with limited low-cost local 
storage? 

Data movement is expensive



How to exploit data reuse 
and local accumulation 

with limited low-cost local 
storage? 

Require specialized 
processing dataflow!

Data movement is expensive



Dataflow Taxonomy

● Weight Stationary (WS) - reduce movement of filter weights

● Output Stationary (OS) - reduce movement of partial sums

● No Local Reuse (NLR) - no local storage at the PE, use a global buffer of larger size



Weight Stationary

Examples: Chakradhar [ISCA 2010], Origami [GLSVLSI 2015]



Output Stationary

Examples: Gupta [ICML 2015], ShiDianNao [ISCA 2015]



No Local Reuse

Examples: DaDianNao [MICRO 2014], Zhang [FPGA 2015]



● Previous approaches only optimize for certain types of data reuse -> this may lead to performance 

degradation when input dimensions vary

● Eyeriss maximizes reuse and accumulation at RF

● Eyeriss optimizes for overall energy efficiency instead of only a specific input type (input fmap, 

filters, psums)

● Eyeriss tries to break high dimensional convolution into 1D convolutional primitives which operate 

on one row of filter weights, one row of input feature map generating one row of partial sums => 

“Row Stationary”

Eyeriss’ data flow: Row Stationary



1D Row Convolution in PE



1D Row Convolution in PE



1D Row Convolution in PE



1D Row Convolution in PE

● Maximize row convolutional reuse in RF
○ Keep a filter row and fmap sliding window in RF

● Maximize row psum accumulation in RF



2D convolution in a PE array



2D convolution in a PE array



2D convolution in a PE array



2D convolution in a PE array



Convolutional Reuse Maximized

Filter rows are reused across PEs horizontally



Convolutional Reuse Maximized

Fmap rows are reused across PEs diagonally



Convolutional Reuse Maximized

Partial sums accumulated across PEs vertically



DNN Processing - The Full Picture



Mapping DNN to the PEs



Eyeriss Deep CNN Accelerator



Evaluation



How do Eyeriss and TPU compare ?

● Programmability?
○ TPU is far more programmable than Eyeriss

● Usability?
○ TPU is relatively more general purpose while Eyeriss is highly optimized for CNNs

● Memory hierarchy?
○ Eyeriss’ memory hierarchy also includes Inter PE communication while TPU’s does not explicitly

● Applications?
○ TPUs are being pushed towards training workloads while Eyeriss is optimized for inference

● Energy?

● Chip size and cost?



Many more DL accelerators...
● State-of-the-art neural networks (AlexNet, ResNet, LeNet etc)

○ large in size  

○ high power consumption due to memory access

○ difficult to deploy on embedded devices

● End-to-end deployment solution (Song et.al.)

○ use “deep compression” to make network fit into SRAM

○ deploy it on EIE (Energy efficient Inference Engine) which accelerates resulting sparse 

vector matrix multiplication on the compressed network

● Accelerators for other DL models

○ Generative Adversarial Networks - GANAX (Amir et.al.)

○ RNNs, LSTMs - FPGA based accelerators, ESE (Song et.al.)

● Mobile phone SoCs

○ Google Pixel 2 - Visual Core, IPhone X - Neural Engine, Samsung Exynos  - NPU
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