
IBM POWER9

Bhopesh Bassi, Ivan Chen, Wes Darvin

What is **POWER9**

- IBM's POWER processor line
- Servers and high-compute workloads
 - Analytics, Al, cognitive computing
 - Technical and high-performance computing
 - Cloud/hyperscale data centers
 - Enterprise computing
- Summit Supercomputer @ Oak Ridge National Lab
 - 200 petaflops

Multithreading and Multiprocessing

Multithreading and Variants

- 12 core and 24 core variants
 - 12 x SMT8 cores
 - 24 x SMT4 cores
- SMT8 supports simultaneous multithreading of up to 8 threads
- SMT4 supports up to 4
- Total resources the same, divided differently

- SMT8 is optimized for IBM's PowerVM (server virtualization) ecosystem
- SMT4 is optimized for the Linux Ecosystem

Symmetric Multiprocessing Interconnect

- Hardware to enable cache-coherent communication between processors
- Two external SMP hookups to connect other POWER9 chips
- Snooping based protocol
 - Multiple command and response scopes to limit bandwidth use

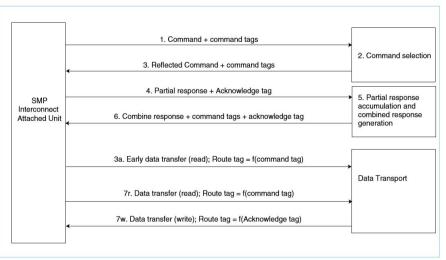
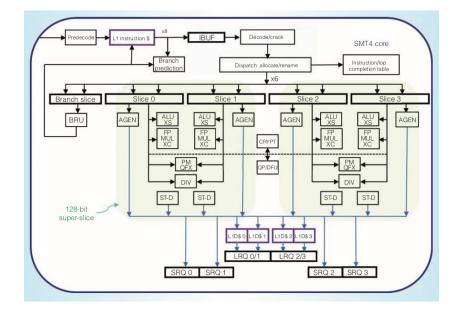


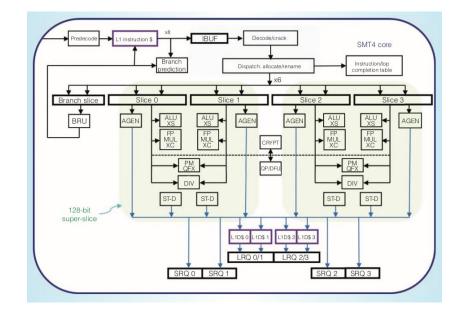
Figure 8-1. SMP Interconnect Coherency Protocol

Core Microarchitecture


Pipeline Structure

- Single Front-End(Master) Pipeline
 - Allows for speculative in-order instructions
 - Throws away mispredicted paths
- Multiple executional unit pipelines
 - Allows for out-of-order instructions of both speculative and non-speculative operations
- Execution Slice Microarchitecture

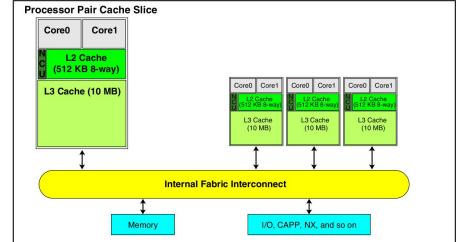
- Pipeline supports completion of up to 128 instructions per cycle (SMT4 Core)
 - Completion of 256 instructions per cycle
- 32KB, 8-way assoc I-Cache and D-Cache
- One-cycle to preprocess inst.
 - Up to six instructions decoded concurrently


Slice Microarchitecture

- 4 Executional slices and 1 Branch Slice
 - 2 execution slices form a super slice and 2 super slices combine to form a four-way simultaneous multithreading core(SMT4 Core)
- 128-entry Instruction Completion Table(SMT4 Core)
- History Buffer and Reorder
 Queue for out-of-order execution
 - Each of the 4 slices have a history buffer and reorder queue

Slice Microarchitecture

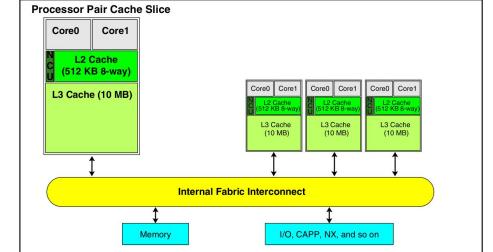
- Four Fixed-Point and LD/ST execution pipelines; One FP Unit and Branch Execution pipeline
- Four Vector Scalar Units
 - Binary FP pipeline
 - Simple and Complex Fixed-Point pipeline
 - Crypto Pipeline
 - Permute Pipeline
 - Decimal floating point pipeline


Branch Prediction

- Direction and Target Address Prediction
- Predict up to 8 branches per cycle
- Static and Dynamic Branch Prediction
 - Static Prediction based on Power ISA
- Four branch history tables: global predictor, local predictor, selector, local selector
 - Used for Dynamic Prediction
 - Each prediction table has 8K entries x 2bit
- Other methods:
 - Link Stack, Count Cache, Pattern Cache

Cache and Memory subsystems

Cache Hierarchy Overview for SMT4 variant

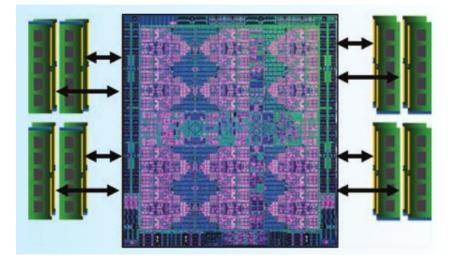

- Three level cache
- 128 byte cache line
- Physically indexed physically tagged
- L1:
 - Separate ICache and DCache
 - o 32 KB 8 way
 - Store through and no write allocate
 - Pseudo LRU replacement
 - Includes way predictor

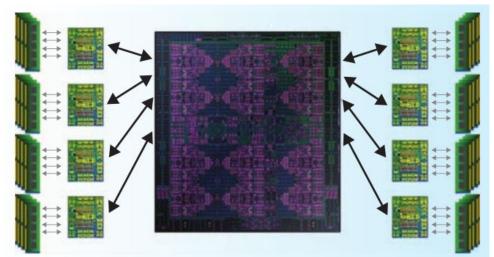
Cache Hierarchy Overview for SMP4 variant contd..

• L2:

- o 512 KB 8-way Unified
- Shared by two cores
- Store back write allocate
- Double banked
- LRU
- Coherent
- L2 is inclusive of L1
- L3:
 - 120 MB shared by all cores.
 - Victim cache for L2 and other L3 regions
 - **NUCA**(Non uniform cache architecture)
 - Each 10 MB region is 20 way set associative
 - Sophisticated replacement policy based on historical access rates and data types.
 - Coherent

[1, 2, 4, 5]

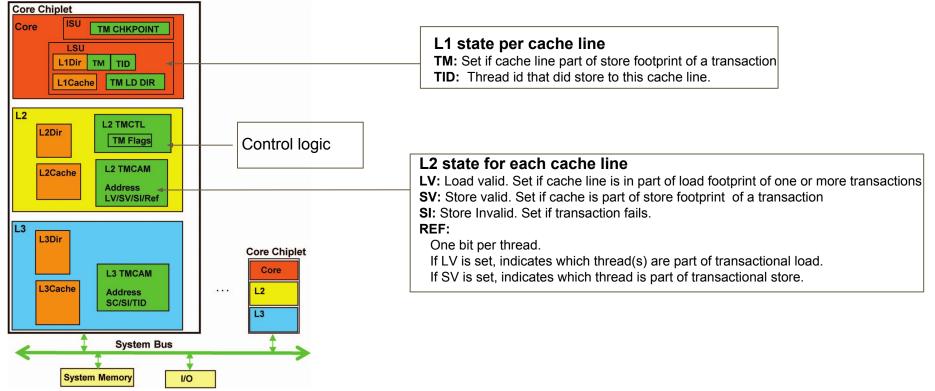

Prefetching


- Prefetch engine tracks loads and stores addresses.
- Recognizes streams of sequentially increasing/decreasing accesses.
 - N-stride detection
- Every L1 D-cache miss is a candidate for new stream.
- Confirmed access in stream causes engine to bring one additional line into each of L1, L2 and L3 cache.
- Upto 8 streams in parallel.
- Software initiated prefetching
- Mitigates cache pollution and premature eviction
 - Lines brought into L3 are several lines ahead of those being brought into L1.

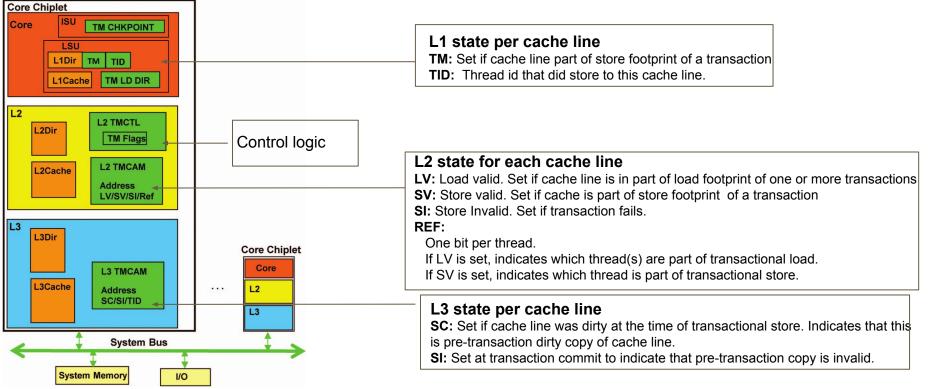
Adaptive Prefetching

- Confidence levels associated with prefetch requests.
 - Determined based on program history and stream
- Memory controller prioritizes requests using confidence level
 - Crucial when memory bandwidth is low.
- Predicts phases of program where prefetching is more effective
- Receives feedback from memory controller to assist in determining depth of prefetch

Memory subsystem



Directly attached memory Scale-out version Upto 4 TB Agnostic Buffered memory Scale-up version Upto 8 TB

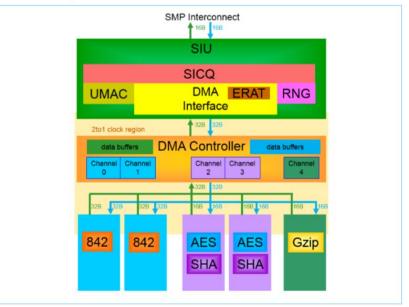

Transactions in Power8 and Power9

- Arbitrary number of loads and stores as a single atomic operation
- Optimistic concurrency control
- Better performance than locks when less contention
- Changes made by ongoing transaction not visible to other threads
- Possible conflicts:
 - Load-Store conflict between two transactions
 - Load-Store conflict between one transaction and one non-transactional operation.
- Implemented at hardware level in Power8 and Power9
 - ISA has instructions for starting, committing, aborting and suspending instructions
 - Best-effort implementation
 - Work with interrupts as transaction suspension is possible.

Transactions contd..

Transactions contd..

Rollback only transactions


- Single thread speculative instruction execution
- Do not guarantee atomicity
 - Use only when accessed data is not shared with other threads
- Use case in trace scheduling
 - No need for complex compensation code.

Heterogeneous Computing

On-chip Accelerators

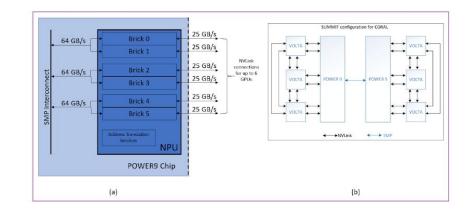

- Nest Accelerator unit
 - DMA and SMP interconnect
 - 2 x 842 compression
 - 1 x GZip compression
 - 2 x AES/SHA

Figure 11-1. NX Block Diagram

GPUs / NVLink 2.0

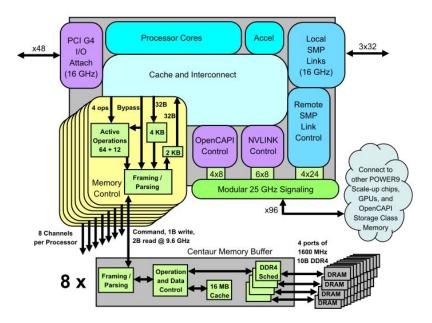
- 25GB/s
 - 7-10x more bandwidth compared to PCIe Gen3
- Coherent memory sharing
- Access granularity
 - o **1 256 bytes**
- Flat address space
 - Automatic data management
 - Ability to manually manage data transfers

Coherent Accelerator Processor Interface

- POWER9 supports CAPI 2.0
- High bandwidth, low latency hookup for ASICs and FPGAs
- Allows cache coherent connection between attached functional unit to SMP interconnect bus

Sources

- 1. Power9 processor architecture: <u>https://ieeexplore.ieee.org/document/7924241</u>
- 2. Power9 user manual: https://ibm.ent.box.com/s/8uj02ysel62meji4voujw29wwkhsz6a4
- Power9 core microarchitecture presentation: <u>https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/61ad9cf2-c6a3-4d2c-b779-61ff0266d32a/page/1cb956e8-4160-4bea-a956-e51490c2b920/attachment/5d3361eb-3008-4347-bf2f-6bf52e13 <u>f060/media/The%20Power8%20Core%20MicroArchitecture%20earlj%20V5.0%20Feb18-2016VUG2.pdf</u>
 </u>
- 4. Power9 memory: https://ieeexplore.ieee.org/document/8383687
- 5. Power8 cache and memory: <u>https://ieeexplore.ieee.org/document/7029173</u>
- 6. Power8 transactions: <u>https://ieeexplore.ieee.org/document/7029245</u>
- 7. ORNL Blogpost: <u>https://www.ornl.gov/news/ornl-launches-summit-supercomputer</u>
- 8. NVLink and POWER9: https://ieeexplore.ieee.org/document/8392669


Backup Slides

SMP Interconnect

- Command broadcast scopes
 - Local Node Scope
 - Local chip with nodal (one chip) scope
 - Remote Node Scope
 - Local chip and targeted chip on a remote group
 - Group Scope
 - Local chip with access to the memory coherency directory
 - Vectored Group Scope
 - Local chip and targeted remote chip

DDR4 buffer chip: Centaur

- Centaur has 16 MB cache
- Acts as L4 cache
- Pros:
 - Lower write latency
 - Efficient memory scheduling
 - Prefetching extensions:
 - Prefetches prefetch requests for high confidence prefetch streams.
- Cons:
 - Load-to-use latency increases slightly
 - Complex system packaging

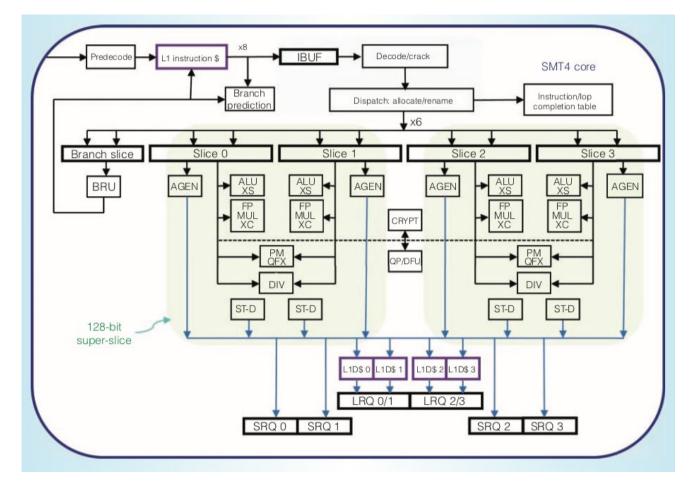


Diagram of slice microarchitecture