TESLA V100 GPU

Xudong Shao Houxiang Ji Hao Gao

The history of GPU architecture

2017 Volta architecture

Figure 1.5: The Scaling of NVIDIA GTX Products for Desktop Utilizations

Reference & Credit: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym, NVIDA Tesla: A Unified Graphics And Computing Architecture

Components of GPU

- ➤ host interface
- vertex work
- pixel fragments work
- compute work

> TPC texture/processor clusters numbers --> performance

UnificationStarts from Tesla architecture

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Reference & Credit: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym, NVIDA Tesla: A Unified Graphics And Computing Architecture

Reference & Credit: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym, NVIDA Tesla: A Unified Graphics And Computing Architecture

➤ Geometry controller

SMCStreaming multiprocessor controller

≻ Texture unit

M							L1 Instruc	tion Cache						
		LOI	nstruct	tion Ca	ache					L0 Ir	nstruc	tion C	ache	
Warp Scheduler (32 thread/clk)							Warp Scheduler (32 thread/clk)							
Dispatch Unit (32 thread/clk)							Dispatch Unit (32 thread/clk)							
Register File (16,384 x 32-bit)						Register File (16,384 x 32-bit)								
FP64	INT	INT	FP32	FP32		\square		FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32	TEN	TENSOR	TENSOR	FP64	INT	INT	FP32	FP32	TENSOR	TENSOR
FP64	INT	INT	FP32	FP32	CORE	CORE	FP64	INT	INT	FP32	FP32	CORE	CORE	
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32				FP64	INT	INT	FP32	FP32		
LD/ LD/ ST ST	LD/ ST	LDV ST	LD/ ST	LDV ST	LD/ ST	LDV ST	SFU	LD/ LD/ ST ST	LDV ST	LD/ ST	LDV ST	LD/ ST	LDV LD/ ST ST	SFU
	L0 Instruction Cache Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)								War Di	p Sch spatci	edule h Unit	r (32 ti (32 th	hread/clk) read/clk)	
	Reg	ister	File (1	6,384	x 32	-bit)			Reg	ister	File (1	16,384	4 x 32-bit)	
FP64	INT	INT												
			FP32	FP32				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32 FP32				FP64 FP64	INT INT	INT INT	FP32 FP32	FP32 FP32		
FP64 FP64	INT INT	INT INT	FP32 FP32 FP32	FP32 FP32 FP32				FP64 FP64 FP64	INT INT INT	INT INT INT	FP32 FP32 FP32	FP32 FP32 FP32		
FP64 FP64 FP64	INT INT INT	INT INT INT	FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32	TEN	SOR	TENSOR	FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT	FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32	TENSOR	TENSOR
FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT	FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32	TEN	ISOR	TENSOR	FP64 FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT INT	FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR
FP64 FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32	TEN	ISOR DRE	TENSOR	FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32	TENSOR CORE	TENSOR
FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32	TEN	ISOR	TENSOR	FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR
FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT	INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TEN	ISOR	TENSOR	FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT INT	INT INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR
FP64 FP64 FP64 FP64 FP64 FP64 ED7 LD7 ST ST	INT INT INT INT INT INT LDJ	INT INT INT INT INT INT LDV ST	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32		ISOR DRE	TENSOR	FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT INT LDV ST	INT INT INT INT INT INT LD/ ST	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENSOR CORE	TENSOR CORE
FP64 FP64 FP64 FP64 FP64 FP64 FP64 LDT LDV ST ST	INT INT INT INT INT LDJ	INT INT INT INT INT INT LDV ST	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TEN CO	ISOR ISOR ISOR	TENSOR CORE	FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT LUY ST	INT INT INT INT INT INT LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32		TENSOR CORE

Figure 5. Volta GV100 Streaming Multiprocessor (SM)

	L0 Instruction Cache								
Warp Scheduler (32 thread/clk)									
Dispatch Unit (32 thread/clk)									
Register File (16,384 x 32-bit)									
FP6	54	INT	INT	FP32	FP32	\square			
FP6	54	INT	INT	FP32	FP32				
FP6	64	INT	INT	FP32	FP32	TENSOR			
FP6	64	INT	INT	FP32	FP32			TENSOR	
FP6	64	INT	INT	FP32	FP32	co	ORE	CORE	
FP6	64	INT	INT	FP32	FP32				
FP6	FP64		INT	FP32	FP32				
FP6	FP64 INT INT FP32 FP32								
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU	

Reference & Credit: Nvidia Tesla V100 GPU Architecture, The World's Most Advanced Data Center GPU. NVIDIA Corporation, 2017

L0 Instruction Cache								
Warp Scheduler (32 thread/clk)								
Dispatch Unit (32 thread/clk)								
Register File (16,384 x 32-bit)								
FP	64	INT	INT	FP32	FP32	\square		
FP	FP64		INT	FP32	FP32			
FP	FP64		INT	FP32	FP32			
FP	64	INT	INT	FP32	FP32	TENSOR	TENSOR	
FP	64	INT	INT	FP32	FP32	cc	DRE	CORE
FP	FP64		INT	FP32	FP32	H		
FP	FP64		INT	FP32	FP32	H		
FP	64	INT	INT	FP32	FP32	\vdash		
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU

- FP64 cores
- FP32 cores
- INT32 cores
- LD/ST
- Register File
- SFU Special-Function-Unit (sin,cos,etc)
- Cache, memory, tensor core (introduced later)
- Warp Scheduler

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm ²	610 mm ²	815 mm ²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

Reference & Credit: Nvidia Tesla V100 GPU Architecture, The World's Most Advanced Data Center GPU. NVIDIA Corporation, 2017

SM multithreading

- ➤ single-instruction multiple-thread (SIMT)
- thread block
- warp (32 threads)
- active mask
- its own instruction address and register state
- select a warp and issue the next instruction

Independent thread scheduling for volta architecture

Figure 4. Single-instruction, multiple-

Reference & Credit: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym, NVIDA Tesla: A Unitional (SIMT) warp scheduling. Graphics And Computing Architecture

Independent thread scheduling for volta architecture

Its own program counter and call stack.

Volta (bottom) independent thread scheduling architecture block diagram compared to Pascal and earlier architectures (top). Volta maintains per-thread scheduling resources such as program counter (PC) and call stack (S), while earlier architectures maintained these resources per warp.

Figure 21. Volta Warp with Per-Thread Program Counter and Call Stack

Reference & Credit: Nvidia Tesla V100 GPU Architecture, The World's Most Advanced Data Center GPU. NVIDIA Corporation, 2017

GPU Memory Hierarchy

Figure 3.1: Memory hierarchy of the Volta V100 GPU (GV100).

Reference & Credit: Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv preprint arXiv:1804.06826.

Where can we get information?

- Published by Nvidia: official but limited

[1] <u>Nvidia Tesla V100 GPU Architecture, The World's Most Advanced Data Center GPU. NVIDIA Corporation,</u> 2017.

[2] Pascal GP100 Whitepaper. NVIDIA Corporation, 2016.

[3] <u>Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J. (2008). NVIDIA Tesla: A unified graphics and computing architecture. IEEE micro, 28(2).</u>

[4] CUDA C Programming Guide, NVIDIA Corporation, 2018.

[5] CUDA C Best Practices Guide, NVIDIA Corporation, 2018.

- Microbenchmarking

[6]: X. Mei and X. Chu, "Dissecting GPU memory hierarchy through microbenchmarking," IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 72–86, Jan 2017.
[7]: Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018), Dissection

[7]: Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv preprint arXiv:1804.06826.

Registers

- Virtual Registers

Two levels of assembly: PTX and SASS. Difference?

Sample PTX and SASS for vector addition

The intermediate language (PTX) use virtual registers. Why?

Size of Register Files
 In GV100, register file is 256KB/SM * 80SMs = 20480KB
 In comparison, L2 caches only 6144KB
 Why so many registers?
 avoid register spilling

Registers

- The register file is divided into 2 banks, each bank 64 bits Use microbenchmark "FFMA R6, R97, R99, RX".

Caches

- Data Cache Structure
 L1 cache on each SM
 L2 cache shared among all SMs
- Latency
 - L1 cache hit: 28 cycles
 - L2 cache hit: 193 cycles
 - L2 cache miss with TLB hit: 375 cycles
 - L2 cache miss with TLB miss: 1029 cycles
- L1 Cache

Volta architecture features combined L1 data cache and shared memory (difference between L1 cache and shared memory?)

Caches

- L1 Cache (continued)

Replacement policy: Not simply LRU.

The same four cache lines from 4 cache set have lowest preservation priority.

- L2 Cache

total size 6144KB; 16-way set-associative cache; cache line size 64B

- TLBs

L1 data cache is indexed by virtual addresses;

L2 data cache is indexed by physical addresses

Two levels of TLB:

L1 TLB: 2M page entries, 32M of coverage

L2 TLB: ~8192MB coverage.

Shared Memory

- Shared within a threadblock
- Specified explicitly by programmer

__global__ void kernel(...)

{

__shared__ float shared_memory[1024]; load global memory into shared memory __syncthreads(); actual computation

}

- configurable, up to 96KB
- shared memory bank

Constant Memory

- Resides on device memory but cached in the constant cache
- Cache hit -> throughput of constant cache
 Cache miss -> throughput of device memory
- Constant memory supports
 broadcasting: when all threads in a
 warp access
 the same location -> simultaneous
 diverging addresses -> serialized

Global Memory

- Memory Coalescing:

Memory accesses from the same warp coalesced into fewer memory block accesses. (fall in the same block, meet alignment criteria)

- HBM2 Memory

2.5D designbetter bandwidth, but slowerenergy efficientsmaller form factor

Figure 9. Cross-section Illustrating GP100 adjacent HBM2 stacks

What's Tensor Core

4x4x4 Warp Matrix Multiply and Accumulate (WMMA)

D = AB + C

Tensor Core

Mixed-precision Operation

D = AB + C

Power of Tensor Core

640 Tensor Cores on V10064 FP FMA per Core per Cycle125 Tensor TFLOPS for DL12x throughput over Pascal

Multi-Process Service (MPS)

Independent Thread Scheduling

