Chapter 1: Fundamentals of Computer Design (Part 2)

What is computer architecture?

Why study computer architecture?

Common principles

Performance

What is performance: latency, throughput

The performance equation

Measuring performance

Improving performance: parallelism, locality, Amdahl's law

Power

Cost

Reliability

What is Performance?

Two Metrics

Latency (or response time or execution time)

Throughput (or bandwidth)

Performance (Cont.)

Definition: X is n% faster than Y if

 $\frac{Execution \ Time_Y}{Execution \ Time_X} = 1 + \frac{n}{100}$

Example: X = 1 minute, Y = 2 minutes X is 100% faster than Y

Key Performance Equation

 $CPU_{time} = \frac{instructions}{program} X \frac{cycles}{instruction} X \frac{time}{cycle}$ Instructions per program (path length) ISA and compiler
Cycles per instruction (CPI)
ISA and organization (e.g., cache misses)
Time per cycle (clock time, cycle time)
Organization and hardware

Measuring Performance

MIPS, MFLOPS don't mean much

Benchmarks

Real programs

Representative of real workload

Only way to characterize performance

SPEC89 → SPEC92 → SPEC95 → SPEC CPU2000 → CPU2006 → CPU2017

SPECFS, SPECWeb, SPECjbb, SPECvirt_Sc2010, TPC

Kernels

``Representative" program fragments

Often not representative of full applications

EEMBC for embedded systems

Toy benchmarks and synthetic benchmarks

Don't mean much

Improving Performance – Basic Principles

Parallelism

Locality

Focus on common case – Amdahl's law

Amdahl's Law

(Or why the common case matters most) Let

 $Speedup = \frac{new \ rate}{old \ rate} = \frac{old \ latency}{new \ latency}$

Consider an enhancement x that speeds up fraction f_x of a task by S_x

$$Speedup_{overall} = \frac{old \ latency}{new \ latency}$$
$$= \frac{\{(1 - f_x) + (f_x)\} \times old \ latency}{(1 - f_x) \times old \ latency} + f_x / S_x \times old \ latency}$$

Amdahl's law gives

Speedup_{overall} =
$$\frac{1}{(1 - f_x) + f_x / S_x}$$

Amdahl's Law, cont.

Example: $f_x = 95\%$ and $S_x = 1.10$

$$Speedup_{overall} = \frac{1}{(1 - 0.95) + (0.95/1.10)} = 1.094$$

Example: $f_x = 5\%$ and $S_x = 10$

$$Speedup_{overall} = \frac{1}{(1 - 0.05) + (0.05/10)} = 1.047$$

Example: $f_x = 5\%$ and $S_x = \infty$

$$Speedup_{overall} = \frac{1}{(1 - 0.05) + (0.05/\infty)} = 1.052$$

Amdahl's Law Corollary

Since $S_x \rightarrow \infty$ implies	Example	f_x	$1/(1-f_x)$
Speedup $\mu = \frac{1}{1}$		1%	1.01
Speedup _{overall} = $\frac{1}{(1 - f_x) + (f_x / \infty)}$		2%	1.02
For all real speedups:		5%	1.05
$Speedup_{overall} < \frac{1}{1 - f_x}$		10%	1.11
$1 - f_x$		20%	1.25
		50%	2.00

Or make the common case fast

An application?

Power

Power

Energy

Temperature

Power and Energy

- Power = Dynamic power + Static power
- Energy = Power * Time

Dynamic Power \propto Capacitance * Voltage² * Frequency

Static power = Static current * Voltage

Growth in Clock Rate

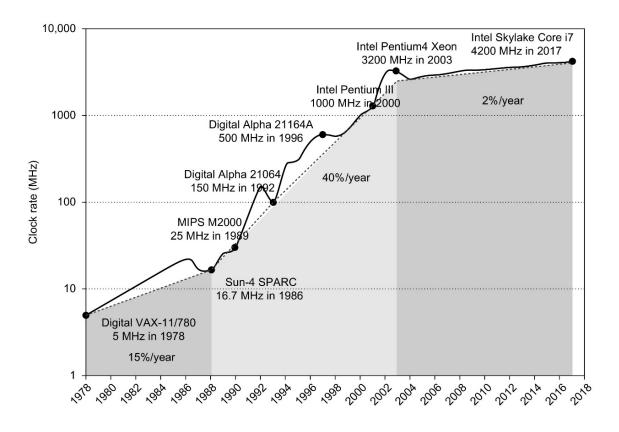


Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved less than 15% per year while performance improved by 22% per year. During the "renaissance period" of 52% performance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock rate has been nearly flat, growing at less than 2% per year, while single processor performance improved recently at just 3.5% per year.

© 2019 Elsevier Inc. All rights reserved.

Cost

Cost is very important in most real designs But usually hard to quantify for the architect

Costs change over time

- Learning curve lowers manufacturing costs
- Technology improvements lower costs

Focus on IC costs next

A Wafer

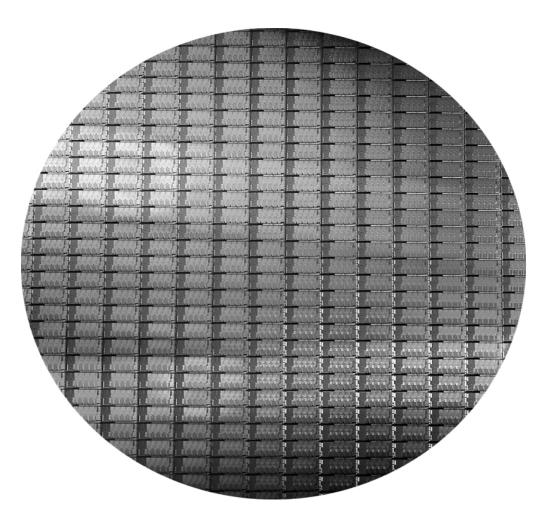


Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by 10.5 mm in a 32 nm process. (Sandy Bridge is Intel's successor to Nehalem used in the Core i7.) At 216 mm2, the formula for dies per wafer estimates 282. (Courtesy Intel.)

Copyright © 2011, Elsevier Inc. All rights Reserved.

A Die

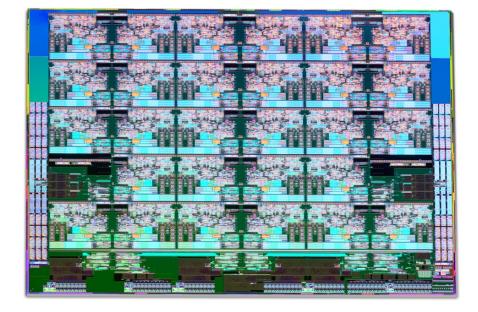


Figure 1.14 Photograph of an Intel Skylake microprocessor die, which is evaluated in Chapter 4.

 $\ensuremath{\mathbb{C}}$ 2019 Elsevier Inc. All rights reserved.

A Die with Parts Labeled

Figure 1.15 The components of the microprocessor die in Figure 1.14 are labeled with their functions.

© 2019 Elsevier Inc. All rights reserved.

Integrated Circuit Cost

$$Cost of IC = \frac{Cost of Die + Cost of Testing + Cost of Packaging}{Final Test Yield}$$

 $Cost of Die = \frac{Cost of Wafer}{Dies per Wafer \times Die Yield}$

Dies per Wafer =
$$(\frac{\pi \times (Wafer \ Diameter/2)^2}{Die \ Area}) - (Correction \ factor \ for \ Edge \ Effects)$$

Die Yield = Wafer Yield × $\frac{1}{(1 + Defects \ per \ unit \ area \times Die \ Area)^{\alpha}}$

 α = 10 to 14 for 16nm in 2017

Bottom line: Cost per die grows roughly as the square of the die area Cost different from price; cost of manufacturing different from cost of operation

Reliability

Many sources of unreliability

Soft errors due to radiation, hard errors due to wearout, ...

Common metrics

Mean time to failure – MTTF

For exponentially distributed time to failure

Define failures in time or FITs

FIT = failures in a billion hours

FIT α 1/MTTF

FIT of system = Sum of FITs of components

Common solution