Chapter 2: Memory Hierarchy Design (Part 3)

Introduction Caches Main Memory (Section 2.2) Virtual Memory (Section 2.4, Appendix B.4, B.5)

Memory Technologies

Dynamic Random Access Memory (DRAM) Optimized for density, not speed One transistor cells Multiplexed address pins Row Address Strobe (RAS) Column Address Strobe (CAS) Cycle time > access time Destructive reads Must refresh every few ms Access every row Sold as dual inline memory modules (DIMMs)

Memory Technologies, cont.

Static Random Access Memory (SRAM) Optimized for speed, then density Typically 6 transistors per cell Separate address pins Static ⇒ No Refresh Greater power dissipation than DRAM Access time = cycle time

DRAM Organization	
DIMM	
Rank	
Bank	
Array	
Row buffer	

DRAM Organization

Rank: chips needed to respond to a single request Assume 64 bit data bus For 8 bit DRAM, need 8 chips in a rank For 4 bit DRAM, need 16 chips in a rank

- Can have multiple ranks per DIMM
- Bank: A chip is divided into multiple independent banks for

pipelined access

Array: A bank consists of many arrays, 1 array per bit of output, for **parallel** access

Row buffer: A "cache" that preserves the last row read from a bank

DRAM Organization

See figure 1.5 in

The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It By Bruce Jacob Synthesis Lectures on Computer Architecture, Morgan & Claypool

Series editor: Mark Hill

Downloadable from U of I accounts

Internals of a DRAM Array

See Figure 1.6 of the synthesis lecture

Steps to access a bit

Pre-charge bit lines

Activate row: turn on word line for the row, brings data to sense amps

Column read: send subset of data (columns)

(Restore data)

DRAM Optimizations – Page Mode

Unoptimized DRAM

First read entire row Then select column from row

Stores entire row in a buffer

Page Mode

Row buffer acts like an SRAM

By changing column address, random bits can be accessed within a row.

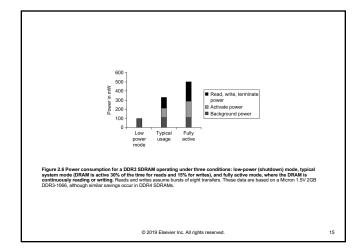
DRAM Optimizations – Synchronous DRAM

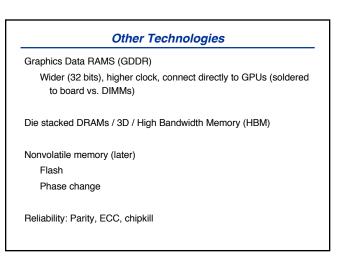
Previously, DRAM had asynchronous interface Each transfer involves handshaking with controller Synchronous DRAM (SDRAM) Clock added to interface Register to hold number of bytes requested Send multiple bytes per request Double Data Rate (DDR) Send data on rising and falling edge of clock

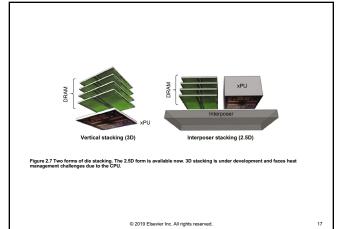
Simple Main Memory

Consider a memory with these parameters: 1 cycle to send address 6 cycles to access each word 1 cycle to send word back to CPU/Cache

What's the miss penalty for a 4word block? $(1 + 6 \text{ cycles} + 1 \text{ cycle}) \times 4 \text{ words}$ = 32 cycles

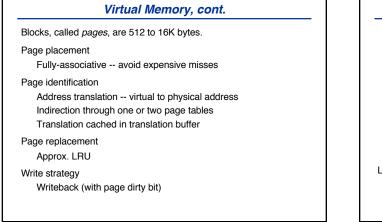

How can we speed this up?

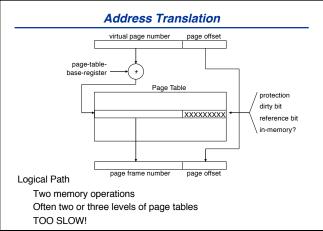

Wider Main Memory

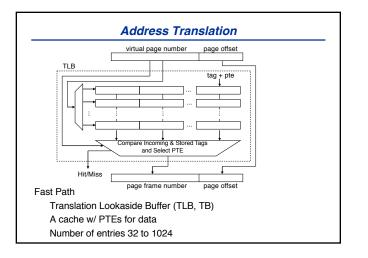

Make the memory wider Read out 2 (or more) words in parallel Memory parameters: 1 cycle to send address 6 cycles to access each *doubleword* 1 cycle to send doubleword back to CPU/Cache Miss penalty for a 4 word block: (1 + 6 cycles + 1 cycle) × 2 doublewords = 16 cycles Cost Wider bus Larger expansion size

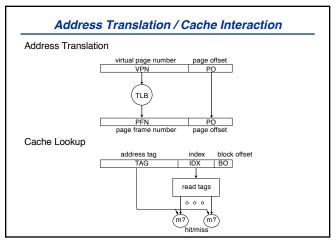
ngamzo moi	nory in banks			
Subseque	nt words map	to different t	banks	
Word A in	bank (A mod	M)		
Within a b	ank, word A ir	n location (A	div M)	
Word address				

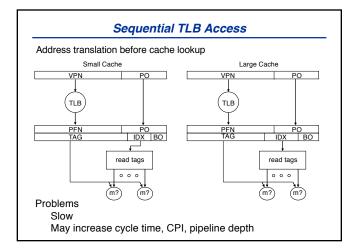
									Standard	I/O clock rate	M transfers/s	DRAM name	MiB/s/DIMM	DIMM name
			Best case a	ccess time (no pr	echarge)	Precharge needed			DDR1	133	266	DDR266	2128	PC2100
Production year	Chip size	DRAM type	RAS time (ns)	CAS time (ns)	Total (ns)	Total (ns)			DDR1	150	300	DDR300	2400	PC2400
2000	256M bit	DDR1	21	21	42	63			DDR1	200	400	DDR400	3200	PC3200
2002	512M bit	DDR1	15	15	30	45			DDR2 DDR2	266	533 667	DDR2-533 DDR2-667	4264	PC4300 PC5300
2004	1G bit	DDR2	15	15	30	45			DDR2	400	800	DDR2-667	5330	PC5300
2006	2G bit	DDR2	10	10	20	30			DDR2 DDR3	533	1066	DDR3-1066	8528	PC8500
2010	4G bit	DDR3	13	13	26	39			DDR3	666	1333	DDR3-1333	10.654	PC10700
2010	8G bit	DDR5	13	13	26	39			DDR3	800	1600	DDR3-1600	12.800	PC12800
2016	80 bit	DDR4	13	15	20	39			DDR4	1333	2666	DDR4-2666	21,300	PC21300
2.4 Capacity and access s a new row must be op arge is required, and the increased. DDR4 SDR	access time	e is longer. As	s the number of	f banks has incre	eased, the a	ability to hide the pre	nd nen ne	Figure 2.5 Clock r columns. The third The fifth column is significant first use	eight times th	dth, and names ce the second, an e third column, a	of DDR DRAMS ad the fourth use and a rounded ve	S and DIMMs in as the number fro rsion of this num	2016. Note the om the third colu aber is used in th	numerical relatio mn in the name le name of the D

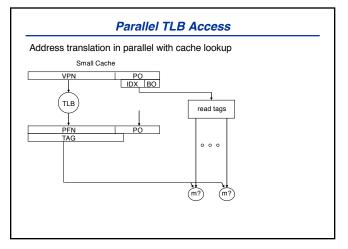


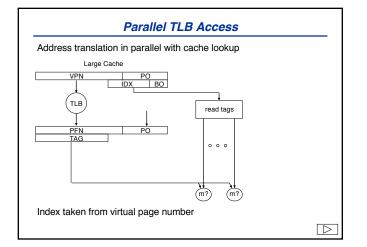


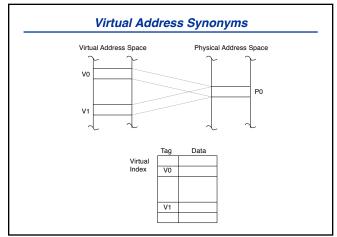


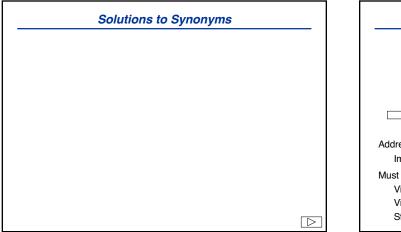

Original Motivation Avoid overlays Use main memory as a cache for disk Current motivation Relocation Protection Sharing	
Use main memory as a cache for disk Current motivation Relocation Protection	
Current motivation Relocation Protection	
Relocation Protection	
Protection	
Sharing	
Shanng	
Fast startup	
Engineered differently than CPU caches	
Miss access time O(1,000,000)	
Miss access time >> miss transfer time	

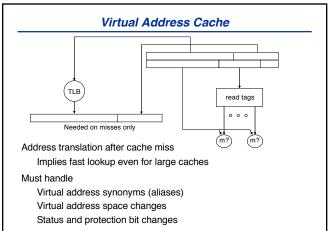

Virtual Memory











Protection

Goal:

One process should not be able to interfere with the execution of another

Process model Privileged kernel Independent user processes

Primitives vs. Policy

Architecture provides the primitives Operating system implements the policy Problems arise when hardware implements policy

Protection Primitives

User vs. Kernel At least one privileged mode Usually implemented as mode bit(s)

How do we switch to kernel mode? Change mode and continue execution at *predetermined* location Hardware to compare mode bits to access rights

Access certain resources only in kernel mode

Protection Primitives, cont.

Base and Bounds Privileged registers Base \leq Address \leq Bounds

Pagelevel protection Protection bits in page table entry Cache them in TLB