
Data Parallel Architectures - SIMD
Motivation
Vectors
Multimedia SIMD
GPUs

Motivation
Recall SIMD from Chapter 5

Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS. There are also
eight 64-element vector registers, and all the functional units are vector functional units. This chapter defines special vector instructions
for both arithmetic and memory accesses. The figure shows vector units for logical and integer operations so that VMIPS looks like a
standard vector processor that usually includes these units; however, we will not be discussing these units. The vector and scalar
registers have a significant number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches
(thick gray lines) connects these ports to the inputs and outputs of the vector functional units.

Vector Processors

What are Vector Instructions?
A vector is a one-dimensional array of numbers

float A[64], B[64], C[64]

Original motivation: Many scientific programs operate on vectors of
floating point data

for (i=0; i<64; i++)
C[i] = A[i] + B[i]

Multimedia, graphics, other emerging apps also operate on vectors
of data

A vector instruction performs an operation on each vector element
ADDVV C, A, B

Why Vector Instructions?
Want deeper pipelines, BUT

Vector Architectures
Vector-Register Machines

Load/store architecture
All vector operations use registers (except load/store)
Multiple ports are cheaper
Optimized for small vectors

Memory-Memory Vector Machines
All vectors reside in memory
Long startup latency
Multiple ports are expensive
Optimized for long vectors

Often vectors are short
Early machines were memory-memory (TI ASC, CDC STAR)
Later machines use vector registers

VMIPS Architecture
Strongly based on Cray
Extend MIPS with vector instructions

Scalar unit
Eight vector registers (V0-V7)

Each is 64 elements, 64 bits wide
Five Vector Functional Units

FP+, FP*, FP/, integer & logical
Fully pipelined

Vector Load/Store Units
Fully pipelined

VMIPS Architecture, cont.
Vector-Vector Instructions

Operate on two vectors
Produce a third vector
for (i=0; i<64; i++)

V1[i] = V2[i] + V3[i]

ADDVV.D V1, V2, V3

Vector-Scalar Instructions
Operate on one vector, one scalar
Produce a third vector
for (i=0; i<64; i++)

V1[i] = F0 + V3[i]

ADDVS.D V1, V3, F0

VMIPS Architecture, cont.
Vector Load/Store Instructions

Load/Store a vector from memory into a vector register
Operates on contiguous addresses

LV V1, R1 ; V1[i] = M[R1 + i]
SV R1, V1 ; M[R1 + i] = V1[i]

Load/Store Vector with Stride
Vectors not always contiguous in memory
Add non-unit stride on each access

LVWS V1, (R1, R2) ; V1[i] = M[R1 + i*R2]
SVWS (R1, R2), V1 ; M[R1 + i*R2] = V1[i]

Vector Load/Store Indexed
Indirect accesses through an index vector

LVI V1, (R1+V2) ; V1[i] = M[R1 + V2[i]]
SVI (R1+V2), V1 ; M[R1 + V2[i]] = V1[i]

VMIPS Architecture, cont.
Double-precision A*X Plus Y (DAXPY):

for (i=0; i<64; i++)
Y[i] = a * X[i] + Y[i]

L.D F0, a
LV V1, Rx
MULVS.D V2, V1, F0
LV V3, Ry
ADDVV.D V4, V2, V3
SV Ry, V4

6 instructions instead of 600!
Remember: MIPS means “Meaningless Indicator of Performance”

Not All Vectors are 64 Elements Long
Vector length register (VLR)

Controls length of vector operations
0 < VLR £ MVL = 64
for (i=0; i<100; i++)

X[i] = a * X[i]

LD F0, a
MTC1 VLR, 36 /* 100 - 64 */
LV V1, Rx
MULVS V2, V1, F0
SV Rx, V2
ADD Rx, Rx, 36
MTCl VLR, 64
LV V1, Rx
MULVS V2, V1, F0
SV Rx, V2

Strip Mining for i = 1, n

Strip Mining
General case: Parameter n

DO 10 I = 1, n
X(i) = a * X(i)

10 CONTINUE

Strip-mined version (pseudocode)
low = 1
VL = (n mod MVL) /* Odd sized piece */
DO 1 j = 0, (n / MVL) /* Outer loop */

DO 10 i = low, low+VL1 /* Length */
X(i) = a * X(i)

10 CONTINUE
low = low + VL /* Base of next chunk */
VL = MVL /* Reset length to MAX */

1 CONTINUE

Old Vector Machines Did Not Have Caches
Caches

Vectorizable codes often have poor locality
Large vectors don't fit in cache
Large vectors flush other data from the cache

Cannot exploit known access patterns
Unpredictability hurts

Degrades cycle time
Vector Registers (like all registers)

Very fast
Predictable
Short id
Multiple ports easier

More Options
Use vector mask register for vectorizing

DO 10 i = 1, 64
if A(i) ! 0.0 then A(i) = A(i)

10 CONTINUE

Use chaining (vector register bypass) for RAWs
MULTV V1, ,
ADDV , V1,

Use gather/scatter for sparse matrices
DO 10 i = 1, 64

A(K(i)) = A(K(i)) + C(M(i))
10 CONTINUE

FINAL WARNING: Make scalar unit fast!
Amdahl's law
CRAY1 was the fastest scalar computer

Compiler Technology
Must detect vectorizable loops
Must detect dependences that prevent vectorization

Data, anti, output dependences
Only data (or true) dependences important, others can be

eliminated with renaming

