
Lecture notes for CS 333 - Chapter 3 12/14/18

Sarita Adve 1

Data Parallel Architectures - SIMD
Motivation
Vectors
Multimedia SIMD
GPUs

Graphics Processing Units (GPUs)
Graphics accelerators

Heterogeneous computing: Host CPU + GPU (device)
Great for graphics: exploit lots of data parallelism
Can we use GPUs for other computing?

Multiple forms of parallelism
MIMD, SIMD, ILP, Multithreading

How to program?
2007: Nvidia developed a C like language

Cuda: Compute Unified Device Architetcture
2009: Khronos group released OpenCL
Recent: Heterogeneous System Architecture (HSA): unified 

virtual address space

Our Focus: Nvidia GPUs + CUDA
Hardware for Maxwell*

* Images from http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

CUDA Programming Model
Single Instruction Multiple Thread (SIMT)

CUDA thread is the unifying parallelism construct
Thread -> (Warp) -> Thread block -> Streaming multiprocessor (SM)
Each SM executes a thread block, one warp at a time
Each warp (32 threads) is executed in SIMD fashion

Computation structured in a grid of thread blocks and threads
functionName<<dimGrid, dimBlock>>(parameter list)

Threads use blockIdx (which block), threadIdx (which thread in block), 
blockDim (dimension of block) to determine which element to 
compute on

Thread scheduling and management in hardware



Lecture notes for CS 333 - Chapter 3 12/14/18

Sarita Adve 2

Programming Model: Memory
Originally, separate memories for CPU/GPU: host vs. device or global
Device/global memory accessible by all SMs
Recent trend – shared virtual memory, integrated CPU+GPU

DAXPY
for (int i=0; i<n; i++)

y[i] = a*x[i] + y[i]
CUDA: 
E.g., n threads, one per vector element, 256 threads per thread block

_host_
int nblocks = (n+255)/256
daxpy<<<nblocks,256>>>(n,2.0,x,y)

_device_
void daxpy(int n, double a, double *x, double *y)
{

int i = (blockIdx * blockDim) + threadIdx;
if (i < n) y[i] = a*x[i] + y[i]

}

Closer View of (Typical) SM Hardware

Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread Scheduler has, 
say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.

Maxwell SM Details
64 concurrent warps
64K 32 bit registers
32 maximum thread blocks
64KB to 96KB scratchpad (shared memory)
2MB shared L2



Lecture notes for CS 333 - Chapter 3 12/14/18

Sarita Adve 3

Key Features and Challenges
Hardware managed thread/thread block scheduling

Thread blocks to SMs
Warps within SM

Multithreading for latency tolerance
Scratchpad aka Shared memory
Caches, Coherence, Consistency
Synchronization between SMs through atomics
SIMD Divergence
Future of accelerators/heterogeneous computing?


