
CS433: Computer Architecture – Fall 2019

Homework 4

Total Points: Undergraduates (32 points), Graduates (50 points)

Undergraduate students should only do Problem 1. Graduate students should solve all

problems.

Due Date: October 15, 2019 at 11:00 am (See course information handout for more details)

Directions:

• All students must write and sign the following statement at the end of their homework

submission. "I have read the honor code for this class in the course information

handout and have done this homework in conformance with that code. I understand

fully the penalty for violating the honor code policies for this class." No credit will be

given for a submission that does not contain this signed statement.

• On top of the first page of your homework solutions, please write your name and

NETID, your partner’s name and NETID, and whether you are an undergrad or grad

student. Also, write your NETID on each successive page.

• Please show all work that you used to arrive at your answer. Answers without

justification will not receive credit. Errors in numerical calculations will not be

penalized. Cascading errors will usually be penalized only once.

Problem 1 [32 points]:

Consider the following architecture.

• In this problem we will use the 5-stage MIPS pipeline.

• The integer functional unit performs integer addition (including effective address

calculation for loads/stores), subtraction, logic operations and branch operations.

• There is full forwarding and bypassing, including forwarding from the end of an FU to the

MEM stage for stores.

• Loads and stores complete in one cycle. That is, they spend one cycle in the MEM stage

after the effective address calculation.

• There are as many registers, both FP and integer, as you need.

• There is one branch delay slot.

Functional Unit Type Cycles in EX Number of

Functional Units

Pipelined

Integer 1 1 No

FP Add/Subtract 3 1 Yes

FP/Integer Multiplier 6 1 Yes

FP/Integer Divider 24 1 No

• While the hardware has full forwarding and bypassing, it is the responsibility of the

compiler to schedule such that the operands of each instruction are available when needed

by each instruction.

• If multiple instructions finish their EX stages in the same cycle, then we will assume they

can all proceed to the MEM stage together. Similarly, if multiple instructions finish their

MEM stages in the same cycle, then we will assume they can all proceed to the WB stage

together. In other words, for the purpose of this problem, you are to ignore structural

hazards in the MEM and WB stages.

The following code implements the DAXPY operation, 𝑌 = 𝑎𝑋 + 𝑌, for a vector length 100.

Initially, R1 is set to the base address of array X and R2 is set to the base address of Y. Assume

initial value of R3 = 0. The DADDUI instruction before the loop is initialization code and should not be

included in the answer to any of the questions.

 DADDIU R4, R1, #800

FOO: L.D F2, 0(R1)

 MUL.D F4, F2, F0

 L.D F6, 0(R2)

 ADD.D F6, F4, F6

 S.D F6, 0(R2)

 DADDIU R1, R1, #8

 DADDIU R2, R2, #8

 DSLTU R3, R1, R4 // set R3 to 1 if R1 < R4

 BNEZ R3, FOO

Part A [6 points]

Consider the role of the compiler in scheduling the code. Rewrite this loop, but let every row take

a cycle (each row can be an instruction or a stall). If an instruction can’t be issued in a given cycle

(because the current instruction has a dependency that will not be resolved in time), write STALL

instead, and move on to the next cycle to see if it can be issued then. Assume that a NOP is

scheduled in the branch delay slot (effectively stalling 1 cycle after the branch). Explain all stalls,

but don’t reorder instructions. How many cycles elapse before the second iteration begins? Show

your work.

Part B [6 points]

Now reschedule the loop. You can change immediate values and memory offsets. You can reorder

instructions, but don’t change anything else. Show any stalls that remain. How many cycles elapse

before the second iteration begins? Show your work.

Part C [6 points]

Now unroll and reschedule the loop the minimum number of times needed to eliminate all stalls.

You can remove redundant instructions. How many times did you unroll the loop? How many

cycles elapse before the next iteration of the loop begins? Don’t worry about clean-up code. Show

your work.

Part D [8 points]

Consider a VLIW processor in which one instruction can support two memory operations (load or

store), one integer operation (addition, subtraction, comparison, or branch), one floating point add

or subtract, and one floating point multiply or divide. There is no branch delay slot. Now unroll

the loop four times, and schedule it for this VLIW to take as few stall cycles as possible. How

many cycles do the four iterations take to complete? Use the following table template to show your

work.

MEM 1 MEM 2 INTEGER FP ADD FP MUL

Part E: Software Pipelining (6 points)

Provide the steady-state code for a software pipelined version of the loop given in this question.

Your code should give the minimum number of stalls using the minimum number of static

instructions. Assume the loop will have at least four iterations. You do not have to show the start-

up or finish-up code (i.e., prolog or epilog).

NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE THE NEXT TWO

PROBLEMS.

Problem 2 [10 points]

Consider the following C code fragment:

 for (i = 0; i < 100; i++) {

 if (c == 0) {

 …

 c = …;

 … // code I

 }

 else {

 …

 c = …;

 … // code II

 }

 … // code III

 }

The above translates to the MIPS fragment below. R5 and R6 store variables i and c, respectively.

Init: MOV.D R5, R0 // i = 0

If: BNEZ R6, Else // Branch1 (c == 0?)

 ... // Code I = 10 instructions; contains a write to R6

 J Join

Else:

 ... // Code II = 100 instructions; contains a write to R6

Join: ... // Code III = 10 instructions

Loop: DADDI R5, R5, #1 // i++

 DSUBI R7, R5, #100

 BNEZ R7, If // Branch2 (i == 100?)

 J Done

Suppose the segments “Code I” (if part), “Code II” (else part), and Code III (common part) contain

10, 100, and 10 assembly instructions respectively. You did a profile run of this program and found

that on average, Branch1 is taken once in 100 iterations of the “for loop”.

Your boss suggests that you perform one of the following two transformations to speed up the

above code: (1) Loop unrolling with an unrolling factor of 2. (2) Trace scheduling.

Which one of these would be more effective and why? Show the code with the more effective

transformation applied. If you use trace scheduling, then include any repair code and branches into

and out of it. Assume that only the values of c and i may need repair. Assume that registers R10

and higher are free for your use.

Problem 3 [8 points]

The example on page H-30 of the textbook uses a speculative load instruction to move a load above

its guarding branch instruction. Read appendix H in the text for this problem and apply the

concepts to the following code:

 instr.1 ; arbitrary instruction

 instr.2 ; next instruction in block

 . . . ; intervening instructions

 BEQZ R1, null ; check for null pointer

 L.D F2, 0(R1) ; load using pointer

 ADD.D F4, F0, F2 ; dependent ADD.D

 . . .

 . . .

null: . . . ; handle null pointer

Part A [4 points]

Write the above code using a speculative load (sL.D) and a speculation check instruction

(SPECCK) to preserve exception behavior. Where should the load instruction move to best hide

its potentially long latency?

Part B [4 points]

Assume a speculation check instruction that branches to the recovery code. Assume that the

speculative load instruction defers both terminating and non-terminating exceptions. Write the

above code speculating on both the load and the dependent add. Use a speculative load, a non-

speculative add, a check instruction, and the block of recovery code. How should the speculated

load and the add be scheduled with respect to each other?

