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CS 433 Midterm Exam – Oct 21, 2019 

Professor Sarita Adve 

Time:  2 Hours 

 
 

Please print your name and NetID and circle the appropriate category in the space provided 

below. 

Name                   SOLUTION 

NetID  

Category Undergraduate Graduate 

 

Instructions 

1. No books, papers, notes, or any other typed or written materials are allowed. No calculators 

or other electronic materials are allowed. 

2. Please do not turn in loose scrap paper. Limit your answers to the space provided if 

possible. If this is not possible, please write on the back of the same sheet. You may use 

the back of each sheet for scratch work. 

3. In all cases, show your work. No credit will be given if there is no indication of how the 

answer was derived. Partial credit will be given even if your final solution is incorrect, 

provided you show the intermediate steps in reaching the final solution. 

4. If you believe a problem is incorrectly or incompletely specified, make a reasonable 

assumption and solve the problem. The assumption should not result in a trivial solution. 

In all cases, clearly state any assumptions that you make in your answers. 

5. This exam has 6 problems and 11 pages (including this one). All students should solve 

problems 1 through 5. Only graduate students should solve problem 6. Please budget 

your time appropriately. Good luck! 
 

 
Problem Maximum Points Received Points 

1 7   

2 15  

3 9  

4 18  

5 9  

6 6  

Total 58 for undergraduates 
64 for graduates 
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Problem 1 [7 points] 

Identify all the data dependences (potential hazards) in the code below. Specify the associated 

instructions, registers, and whether the dependence is a RAW, WAW, or WAR. State whether the 

dependence will cause a stall. Consider the 5-stage MIPS pipeline. Branches are resolved in the 

ID stage. All stages take 1 cycle. Assume full forwarding. If the identified pair does not form a 

dependence at all, you will get negative points (so don’t give all possible instruction pairs!). 

 

1: LD R1, 0(R6) 

 

2: LD R2, 4(R6) 

 

3: ADD R3, R2, R1 

 

4: SUB R2, R2, R1 

 

5: BEQZ R2, dest 

 

Solution 

The dependences are: 

 

1->3 RAW (R1) 

1->4 RAW (R1) 

2->3 RAW (R2) stall  

2->4 RAW (R2) 

2->4 WAW (R2) 

3->4 WAR (R2) 

4->5 RAW (R2) stall (EX -> ID) 

 

 

Grading: 

1 point for each dependence with correct stall information 

½ point for a correct dependence with incorrect stall information 

 -¼ points for incorrect listings or listing RAR relationships  
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Problem 2 [15 points] 

This problem concerns Tomasulo’s algorithm (with reservation stations) with the reorder buffer as 

discussed in detail in the lecture notes, with the following changes/additions/ clarifications. 
 

  Functional Unit Type Cycles in EX (NON-PIPELINED)   Number of Functional Units 

  Integer 1 1 

  FP Add/Subtract 3 1 

  FP Divide 6 1 

 

1) Assume dual issue and dual commit. 

2) Assume unlimited reservation stations. 

3) Loads use the integer function unit to perform effective address calculation during the EX stage. 

They also access memory during the EX stage. Loads stay in EX for 1 cycle. 

4) If an instruction moves to its WB stage in cycle x, then an instruction that is waiting on the same 

functional unit (due to a structural hazard) can start executing in cycle x. 

5) An instruction waiting for data on the CDB can move to EX in the cycle after the CDB broadcast. 

6) Only one instruction can write to the CDB in one clock cycle. Branches/stores do not need the CDB. 

7) When there is a conflict for a functional unit or the CDB, assume that the oldest (by program order) 

instruction gets access, while others are stalled. 

8) Assume that the result from the integer functional unit is also broadcast on the CDB and forwarded 

to dependent instructions through the CDB (just like any floating point instruction). 
 

Complete the blank entries in the following table using the above specifications. For each instruction, fill in 

the cycle numbers in each pipeline stage (CM stands for commit). For the last column, enter all the reasons that 

the instruction experiences a stall (leave blank if there is no stall). The first row is filled for you. 

 

No Instruction IS   EX WB CM Reason for stall 

1 L.D F0, 0(R1) 1 2 3 4 --- 

2 ADD.D F0, F0, F3 1 4-6 7 8 RAW due to F0 from (1) 

3 DIV.D F8, F0, F6 2 11-16 17 18 RAW due to F0 from (2) 

Structural Hazard due to (6) 

4 L.D F6, 8(R1) 2 3 4 18 --- 

5 ADD.D F4, F6, F2 3 7-9 10 19 RAW due to F6 from (4) 

Structural hazard due to (2) 

6 DIV.D F4, F6, F2 3 5-10 11 19 RAW due to F6 from (4) 

7 L.D F6, 16(R1) 4 5 6 20 --- 
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Grading: .5 points for each entry in the table. Cascading errors are not penalized.  

 

Problem 3 [9 points] 

 

Consider the following piece of code: 

 

DADDI  R1, R0, #100 

 

L1: DADDI  R1, R1, #-1 

BEQZ    R1, END -- Branch 1 

DADDI  R12, R0, #2 

 

L2: DADDI  R12, R12, #-1 

BNEZ    R12, L2 -- Branch 2 

 

J   L1 

 

END: ... 

 

Assume R0 stores 0.  Branch 1 is executed 100 times and branch 2 is executed a total of 198 times.  For 

each branch, how many correct predictions will occur if we use the following prediction schemes (as 

discussed in class)?  Assume separate prediction bits for each branch (i.e., no aliasing). Assume at the 

beginning of execution, the last branch was not taken.  Please explain your answers. 

 

Part A [3 points]  

1-bit predictor initialized to T (taken).  

Solution: 

Branch 1: N, N, N, …, N, T is predicted correctly every time except the first and last.  

Branch 2 alternates T, N, T, N, ... and thus is predicted incorrectly every time except the first. 

Branch 1: 98 correct predictions, Branch 2: 1 correct prediction. 

Grading: ½ point for each number and 1 point for each explanation. 

 

Part B [3 points]  

2-bit saturating predictor initialized to 10 (taken). 

Solution: 

Branch 1 is predicted correctly every time except the first and last.  

Branch 2’s predictor alternates between 10 and 11, and thus predicts correctly every other time. 

Branch 1: 98 correct predictions, Branch 2: 99 correct predictions. 

Grading: ½ point for each number and 1 point for each explanation. 
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Part C [3 points]  

(1, 1) global correlating predictor, initialized to T/T. 

Solution: 

When Branch 1 is executed, the last branch is always not taken, so performance is the same as with a 1-

bit predictor. Branch 2 is always taken when the last branch was not taken and not taken when the last 

branch was taken.  Thus, there is one incorrect prediction - the first time it is not taken. 

Branch 1: 98 correction predictions, Branch 2: 197 correct predictions. 

Grading: ½ point for each number and 1 point for each explanation. 
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Problem 4: [18 points]  
 

Consider the following code fragment: 

Loop: LD.D       F1, 0(R1) 

LD.D        F2, 0(R2) 

MUL.D     F3, F1, F10 

ADD.D     F4, F3, F2 

SD.D        F4, 0(R1) 

DADDUI  R1, R1, #8 

DADDUI  R2, R2, #8 

BNE       R1, R3, Loop 

 

Consider a pipeline with the following latencies: 3 cycles between an FP multiply and its consumer, 1 

cycle between an FP add and its consumer, and 0 cycles between all other pairs. Thus, there should be 

three stall cycles between the multiply and addition in the above code for correct operation. Assume that 

all functional units are pipelined. 

 

Unroll the above loop 4 times and write the resulting code to the left of the table on the next page (the 

above loop is repeated on the next page for your convenience). You have access to temporary registers 

T0…T63. Assume that the total number of iterations for the original loop is a multiple of 4.  Schedule 

the unrolled loop for a VLIW machine where each VLIW instruction can contain one memory reference, 

one FP operation, and one integer operation. Write the scheduled instructions in the table on the next 

page to minimize the number of stalls. You may use L for L.D, M for MUL.D, etc. 
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Loop: LD.D      F1, 0(R1) 

LD.D       F2, 0(R2) 

MUL.D    F3, F1, F10 

ADD.D    F4, F3, F2 

SD.D       F4, 0(R1) 

DADDUI R1, R1, #8 

DADDUI R2, R2, #8 

BNE      R1, R3, Loop 

 

 

Loop: LD.D F1, 0(R1) 

LD.D F2, 0(R2) 

MUL.D F3, F1, F10 

ADD.D F4, F3, F2 

SD.D F4, 0(R1) 

 

LD.D T1, 8(R1) 

LD.D T2, 8(R2) 

MUL.D T3, T1, F10 

ADD.D T4, T3, T2 

SD.D T4, 8(R1) 

 

LD.D T5, 16(R1) 

LD.D T6, 16(R2) 

MUL.D T7, T5, F10 

ADD.D T8, T7, T6 

SD.D T8, 16(R1) 

 

LD.D T9, 24(R1) 

LD.D T10, 24(R2) 

MUL.D T11, T9, F10 

ADD.D T12, T11, T10 

SD.D T12, 24(R1) 

 

DADDUI R1, R1, #32 

DADDUI R2, R2, #32 

BNE R1, R3, Loop 

 

 

 

 

 

 

  

Mem FP ALU Integer ALU 

LD.D F1, 0(R1)   

LD.D T1, 8(R1) MUL.D F3, F1, F10  

LD.D T5, 16(R1) MUL.D T3, T1, F10  

LD.D T9, 24(R1) MUL.D T7, T5, F10  

LD.D F2, 0(R2) MUL.D T11, T9, F10 DADDUI R1, R1, #32 

LD.D T2, 8(R2) ADD.D F4, F3, F2  

LD.D T6, 16(R2) ADD.D T4, T3, T2  

LD.D T10, 24(R2) ADD.D T8, T7, T6  

SD.D F4, -32(R1) ADD.D T12, T11, T10 DADDUI R2, R2, #32 

SD.D T1, -24(R1)   

SD.D T5, -16(R1)   

SD.D T9, -8(R1)  BNE R1, R3, Loop 
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Grading: 9 points for code on left, 9 points for table. Minimum score is 0 for both. 

Deductions (only for first error, no cascading errors): 

• -2 points for badly ordered loads. 

• -2 points for inconsistent load/store addresses. 

• -2 points for badly ordered MULs or ADDs. 

• -2 points for late stores. 

• -2 points for late branches/integer operations. 

• -2 points for missing or wrong-path operations. 

• -2 points if instruction uses wrong functional unit. 

• -2 points if R1/R2 are updated every iteration. 

• -2 points for inconsistent DADDUI offsets. 

• -2 points for violating a RAW dependency. 

• -1 point if temporary registers are out of bounds (not from T0-T63). 

• -1 point if branch delay slot used but not stated in assumptions. 

• No deduction for not using temporary registers. 

If you did not write the unrolled code, we immediately deducted ½ points.  Then we took your VLIW 

scheduled code and graded it according to the above deductions. 
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Problem 5: [9 points]  

Consider the classic five stage pipeline as discussed in class, with the following extensions/clarifications: 

• The MEM stage takes 4 cycles but is pipelined. 

• Branches are resolved in the decode stage, and have one branch delay slot. 

• All instructions take one cycle in the EX stage. Address calculation for memory instructions occurs 

in the EX stage as in the basic pipeline. 

• Assume all forwarding paths as needed. 

Consider the loop below. It calculates the sum of a list of numbers stored in an indirect representation. 

Instead of storing the number, the locations 0(R1), 4(R1), 8(R1), etc. contain the addresses of the values. 

This is similar to the memory access pattern of sparse matrix codes. The sum is accumulated in F1. 

 

loop: 

1) LD R3, 0(R1) 

2) LD.D F2, 0(R3) 

3) ADD.D F1, F1, F2 

4) SUBIU R2, R2, #1 

5) BNEZ R2, loop 

6) ADDIU R1, R1, #4 

 

Part A [3 points] List all the stalls incurred by the above loop and the reason for the stalls. If a 

dependence results in multiple stall cycles, indicate the number of cycles. 

 
Solution: 

1->2: 4 stall cycles due to RAW on R3. 

2->3: 4 stall cycles due to RAW on F2. 

4->5: 1 stall cycle due to RAW on R2 

 

Grading: ½ point for identifying each stall. ½ point for the correct number of cycles. 3 points total. 

  

Part B [4 points]  

Software pipeline the loop to minimize the stalls. Assume infinite registers are available. Only the most 

efficient solution will fetch a perfect score. Only provide the steady state code. Do not worry about 

start-up and finish-up code. (Do not unroll the loop for this part.). The original loop is included at the 

top of this page for convenience.  

 
Solution: 

loop: 

LD.D F2, 0(R3) 

LD R3, 0(R1) 

SUBIU R2, R2, #1 

ADDIU R1, R1, #4 

BNEZ R2, loop 

ADD.D F1, F1, F2 

 

Grading: 2 points if the solution appears to “spread out” the two loads and the add in different iterations. 3 

points for a mostly correct solution. 4 points for a perfect solution.  
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Part C [1 point] 

What is the advantage of using software pipelining over loop unrolling for the above code? 

 

 

Solution: There are fewer static instructions in a software pipelined loop and so there is less pressure 

on the instruction cache. 

 

Grading: 1 point for identifying fewer static instructions as the reason. 

 

 

 

 

 

Part D [1 point] 

What is the advantage of using loop unrolling over software pipelining for the above code? 

 

 

Solution: There are fewer dynamic instructions because the loop overhead is reduced. 

Grading: 1 point for correct answer.
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ONLY GRADUATE STUDENTS SHOULD SOLVE THE NEXT PROBLEM. 

 

Problem 6: [6 points]  

 

You are a member of a team designing an out-of-order processor with dynamic scheduling and 

speculative execution. Your initial design was just reviewed by the circuit implementation team, and it 

turns out that you have some spare transistor budget! (A rare occurrence in practice.)  

 

Your processor currently has a small 2-bit saturating counter-based branch predictor which performs 

moderately well. It has 8 Integer Functional Units and 4 Floating Point Units (FPUs), 256KB of on-chip 

caches, 4 reservation stations for the Integer Units, and 2 reservation stations for FPUs. The Reorder 

Buffer has 8 entries. The processor has a 25 stage pipeline.  

 

The applications you care for have a small code size and work on small data sets in the range of 64 KB. 

These applications spend most of their time in loops whose iterations are independent of each other, but 

typically have only a limited amount of ILP within a single iteration (within the current processor 

implementation).   

   

You can use the extra transistors in (possibly several of) the following ways:       

1. Improve the branch predictor accuracy.       

2. Add more reservation stations to your Tomasulo’s Algorithm-based Dynamic Scheduler. 

3. Add more FPUs and Integer Units.    

4. Add more Reorder Buffer entries.  

   

Some of these may be desirable additions, while others may not be too beneficial given the current 

configuration. There is a meeting coming up to discuss the proposed additions. Which of the above four 

additions should you support and which ones should you oppose (you can support/oppose multiple of 

these)? You need to justify your choices to receive credit. 

 

   

Solution: 

 

1. Improve the branch predictor accuracy: This is a desirable addition. The problem states that the 

branch predictor performs only moderately well and the processor has a long pipeline making branch 

mispredictions expensive. Thus, improving branch prediction accuracy is quite likely to increase 

performance. 

   

2. Add more reservation stations to your Tomasulo’s Algorithm-based Dynamic Scheduler: This is a 

desirable addition. More reservation stations would mean a larger window within which the processor 

can search for ready instructions to execute, thus it can discover more parallelism and keep execution 

units busy. This would lead to better performance, especially since our application needs to discover 

parallelism  across loop iterations.  

 

3. Add more FPUs and Integer Units: This doesn’t seem to be a good addition. The current machine 

already has enough FUs and we should try to improve other aspects of the processor. Adding more FUs 
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won’t help if the processor is unable to discover enough parallelism in the instruction stream to keep 

them busy.     

   

4. Add more Reorder Buffer entries: This is a desirable addition. The current configuration has very 

few ROB entries. A large ROB helps to mask out the effects of long latency instructions and help 

search for parallelism within a larger window (this goes together with (3)). 

 

Grading:  

1.5 points for correctly analyzing each part. 6 points total. Give partial credit (0.5 points) if student 

gives valid reason for why improvement can be avoided. 

 

 


