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CS 433 Midterm Exam – Oct 15, 2018 
Professor Sarita Adve 

Time:  2 Hours 
 
 

Please print your name and NetID and circle the appropriate category in the space provided 
below. 

Name Solution 
NetID  
Category Undergraduate Graduate 

 
Instructions 

1. No books, papers, notes, or any other typed or written materials are allowed. No calculators 
or other electronic materials are allowed. 

2. Please do not turn in loose scrap paper. Limit your answers to the space provided if 
possible. If this is not possible, please write on the back of the same sheet. You may use 
the back of each sheet for scratch work. 

3. In all cases, show your work. No credit will be given if there is no indication of how the 
answer was derived. Partial credit will be given even if your final solution is incorrect, 
provided you show the intermediate steps in reaching the final solution. 

4. If you believe a problem is incorrectly or incompletely specified, make a reasonable 
assumption and solve the problem. The assumption should not result in a trivial solution. 
In all cases, clearly state any assumptions that you make in your answers. 

5. This exam has 6 problems and 11 pages (including this one). All students should solve 
problems 1 through 5. Only graduate students should solve problem 6. Please budget 
your time appropriately. Good luck! 

 
 

Problem Maximum Points Received Points 
1 4   
2 11  
3 9  
4 14  
5 4  
6 7 (for graduates only)  

Total 42 for undergraduates 
49 for graduates 
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Problem 1 [4 points] 

Assume 90% of a program can be executed in parallel. 
 

Part A [2 points] 

What speedup is required on the parallel section to achieve an overall speedup of 4X for the full 
program? 

 

Solution: Let S be the speedup on the parallel section and T be the original total time. 

.9T/S + .1T = T/4 

.9/S + .1 = .25 

.9/S = .15 

S = .9 / .15 = 6. 6X speedup is required on the parallel section. 

Grading: 2 points for the correct formula. 0 points for the final answer without showing the work. 
 
 
 
 
 
 
 

Part B [2 points] 

What is the maximum possible speedup achievable on the above program through parallelization? 
 

Solution: In the limit, the parallel section reduces to 0, so speedup = T / 0.1T = 10X. 

Grading: 2 points for the correct formula. 
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Problem 2 [11 points] 

This problem concerns Tomasulo’s algorithm with dual issue and hardware speculation. 

Consider the following architecture. 
 

Functional Unit Type Cycles in EX Number of Functional 
Units 

Integer 1 1 
FP Add/Subtract 4 1 
FP Multiply 5 1 
FP Divide 16 1 

 
• Functional units are not pipelined. 
• Memory accesses use the integer functional unit to perform effective address calculation 

during a single cycle EX stage. Stores access memory during the commit stage while loads 
access memory during EX. Stores do not need the CDB or the WB stage. 

• Assume that integer instructions also follow Tomasulo’s algorithm (analogous to the floating 
point instructions). So the result from the integer functional unit is also broadcast on the CDB 
and forwarded to dependent instructions through the CDB. An exception is that addresses 
generated for memory accesses are not broadcast on the CDB. 

• If an instruction moves to its WB stage in cycle x, then an instruction that is waiting on the 
same functional unit (due to a structural hazard) can start executing in cycle x. 

• An instruction waiting for data on the CDB can move to EX in the cycle after the CDB 
broadcast. 

• Only one instruction can write to the CDB in one clock cycle. 
• If there is a conflict for a functional unit or the CDB, the oldest (by program order) 

instruction gets access. 
• Branches use the integer unit with one cycle in EX. They do not need the CDB or the WB 

stage. 
• Assume a perfect branch predictor. That is, an instruction can issue before a prior branch has 

completed execution, but it cannot issue in the same cycle as the branch issues (the earliest it 
can issue is the cycle immediately after the branch issues). Any other instruction pair can issue 
in the same cycle. 

• There are unlimited reorder buffer entries and reservation stations. 
• Two instructions can commit per cycle. 

Complete the blank entries in the following table using the above specifications. For each 
instruction, fill in the cycle numbers in each pipeline stage (CM stands for commit). Then indicate 
where its source operands are read from (use RF for register file, ROB for reorder buffer, and CDB 
for common data bus) – the source of the first operand should appear first. In the last two 
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columns, indicate if the instruction is stalled for structural or data hazards. If it is stalled, indicate 
which instructions cause those stalls – give all such instructions even if the dependence due to one 
of them is resolved before the other. Some entries are filled for you. You don’t have to fill entries 
with “---” 

 
 
 
 Instruction IS EX WB CM Source of 

operand1, 
source of 
operand2 

Stalls due to 

structural 
hazards 

data 
hazards 

1 L.D F0, 0(R1) 1 2 3 4 --- --- --- 

2 DIV.D F2, F0, F6 1 4 20 21 CDB, RF No Yes: 1 

3 L. D F6, 8(R1) 2 3 4 21 --- --- --- 

4 ADD.D F4, F2, F6 2 21 25 26 --- No Yes: 2,3 

5 MUL.D F8, F6,F4 3 26 31 32 CDB, CDB --- --- 

6 S.D F4, 16(R1) 3 4 - 32 --- --- --- 

7 DADDUI R1, R1, -32 4 5 6 33 --- --- --- 

8 BNEZ R1, target 4 7 - 33 --- --- --- 

9 ADD.D F10, F2, F6 5 25 29 34 CDB, ROB Yes: 4 Yes: 2 

 
 

Grading: ¼ point for each IS, EX, WB and CM entries; ¼ point bonus if all entries are correct 
(total of 8 points). 1/2 point for each correct source operand (total 2 points). ¼ point for each 
stall entry; points given only if all instructions causing a stall are mentioned (total 1 point). 

Note: Cascading errors were not penalized. 

Total 11 points 
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    Problem 3 [9 points]  

Consider a loop that is entered multiple times in a program. Each time it is entered, the loop performs 10 
iterations. Each iteration executes five branches with the following outcomes (Branch 1 occurs 
before Branch 2 which occurs before Branch 3 which occurs before Branch 4 which occurs before Branch 
5 in each iteration): 

 
Iteration 1 2 3 4 5 6 7 8 9 10 

Branch1 T N N N N N N N N N 

Branch2 T T T N N N T T T T 

Branch3 T N T N T N T N T N 

Branch4 T T N N N T T T T N 

Branch5 T T T T T T T T T N 
 

When Branch 5 is not taken at iteration 10, the program counter leaves the loop. Assume there are 
no other conditional branches in the program besides the ones above. (There may be unconditional 
jumps, but assume those are ignored by branch predictors.) Also assume that each branch has its 
own predictor entries; i.e., there is no aliasing among the multiple branches on the predictor entries. 

 
Of all the dynamic branch predictors studied in class, state the predictor that will give the best 
misprediction rate for each of the following branches (don’t worry about gshare or tagged hybrid 
predictors). State the misprediction rate of that predictor. In a case where multiple predictors will 
give the best misprediction rate, give the cheapest such predictor. Explain why. (No credit without 
explanation.) Focus on the steady state; i.e., ignore the first few times the loop is executed when 
evaluating your misprediction rate. 

 

   Part A [3 points] 

   Branch 1 

 
Solution: 
Branch 1 is always opposite the previous branch, which is branch 5. A global (1,1) predictor 
will always predict correctly, after the first execution of the loop. 

    Half credit for saying 2-bit predictor. 
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Part B [3 points] 

Branch 2 
Solution: 

Branch 2’s outcome follows the pattern established by the previous 3 branches (branches 4 and 5 
from the previous iteration and branch 1 from the same iteration). Therefore, a (3,1) correlating 
predictor is best. 
 
Partial credit (1 point) for saying 1-bit predictor 

 
  
 

Part C [3 points] 
 

                   Branch 5 – for this part and this part alone, do not consider correlating predictors 
 

Solution: 
Branch 5 is almost always taken. We need to use a 2-bit predictor. It will have one misprediction 
each time the code exits the loop. In contrast, a 1 bit predictor will have two mispredictions– at 
the entry and exit of each loop invocation. 

 
 

Grading: 
3 points for each part. Half credit for a predictor which is more expensive, but attains the minimal 
error rate. Half credit if the explanation gives an incorrect prediction rate. No credit without 
explanation. 
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Problem 4: [14 points]  
 
Assume an in-order single-issue pipeline with multiple functional units. IF, ID, and WB take 1 cycle as 
usual, branches are resolved in ID, and all needed forwarding paths are provided. There is a fully 
pipelined, 3 cycle FP add unit (i.e., 3 cycles elapse from the time an FP add enters its functional unit to 
the time its result is available for a later instruction). There is a fully pipelined 5 cycle FP multiplier, and 
a 1 cycle integer ALU for all non-branch integer instructions.  Loads and stores execute for 1 cycle in the 
integer ALU and spend 12 cycles in MEM. Consider the following code on the above machine: 
 
loop: 
    LD.D          F4,       0(R1) 
    LD              R2, 4096(R1) 
    LD.D          F10,      0(R2) 
    MUL.D      F6, F4, F10 
    ADD.D      F8, F8, F6 
    DADDI      R1, R1, #8 
    BNEQ        R1, R3, loop   // branch if R1 does not equal R3 
 
Part (A) [4 points]  
Give one pair of instructions with a RAW dependence that requires the most separation between them 
to avoid stalling? What is the minimum number of instructions that would need to be between this pair 
in program order to avoid the stall? Explain your answer. 
 
Solution: 
A load and an instruction that uses the load’s result require the most separation. Any such pair is 
acceptable. Each of these pairs requires 12 instructions of separation. The load produces a result after 1 
cycle of EX and 12 of MEM, and in this code all the instructions that need the result of the load will 
use that result in EX. 
 Grading: 
2 points for any correct pair with correct explanation. 2 points for the number of instructions needed for 
separation. 1 point partial credit on the separation if the correct forwarding (MEM->EX) is mentioned. 
 
 
Part (B) [2 points]  
Consider the two dependent instructions from Part (A). Just for this part, ignore all other dependences 
in the loop body; i.e., assume that dependences for all other instructions magically do not require any 
stalls. Now consider unrolling the loop to remove any stalls between the instructions chosen in Part (A). 
What is the minimum number of original iterations that the new unrolled loop would need to have to 
eliminate these stalls? Remember to explain your answer. 
Solution: 
From part (a), a loop must be at least 14 instructions long to avoid stalling. There are 5 instructions of 
loop body which will be multiplied by unrolling, and two instructions of loop overhead which will not. 
Having two of the original iterations in the unrolled loop is insufficient (2*5+2 = 12 < 14), 3 iterations 
is enough. 
Grading: 
2 points for correct count, but only with explanation. 1 point partial credit for finding the number of 
instructions needed in the unrolled loop. 
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Part (C) [8 points]  
Now consider the original loop with all the original dependences and stalls as in Part (A). Software 
pipeline the loop to run in as few cycles as possible, using the start-up code given below. You only 
have to produce the code for the steady state. Do not write or consider the performance of the clean-up 
code. Do not modify the start-up code. Do not unroll the loop.  
Startup code: 
    LD              R2,  4096(R1)               // iteration 1 
    LD.D          F4,         0(R1)              // iteration 1 
    LD.D          F10,       0(R2)              // iteration 1 
    LD              R2,   (8+4096)(R1)    // iteration 2 
    DADDI      R1,   R1,    #16 
 
Your steady-state code here: 
 
Solution: 
loop:   
    MUL.D       F6, F4, F10                // iteration i    
    LD.D          F4, -8(R1)                  // iteration i +1 
    LD.D          F10, 0(R2)                 // iteration i+1 
    LD              R2, 4096(R1)            // iteration i+2 
    ADD.D      F8, F8, F6                  // iteration i 
    DADDI      R1, R1, #8              
    BNEQ        R1, R3, loop 
 
This avoids using load results for as long as possible. 8 stall cycles remain. (Multiply depends on both 
loads.) 
 
 
Grading: 1 point for listing all the instructions from iteration i (1/2 point deducted for missing 
instructions), 1 point for listing all the instructions from iteration i+1 (1/2 point deducted for missing 
instruction), 1 point for listing instruction from iteration i+2, 1/2 point each for listing the DADDI and 
BNEQ instructions. 1/2 point each for listing correct offset and immediate for the loads and DADDI 
instructions. 2 points for correct ordering of instructions (1/4 point deducted for each incorrect order). 
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Problem 5 [4 Points] 
 

Consider the following format for predicated MIPS instructions: 
(pT) ADD R1, R2, R3 

where the ADD instruction is predicated on the predicate register pT. Assume a set of 1-bit 
predicate registers. 

 
Assume compare instructions that set a pair of predicate registers to complementary values: 

CMP.NE pT, pF = R8, R0 
The above compare sets the 1-bit predicate registers, pT and pF, based on the "not equal" (NE) 
comparison relation as follows: 

pT = (R8 != R0) 
pF = !(R8!= R0) 

So pT is true if R8 is not equal to R0, and pF is the complement of pT. 
 

For the following problem, you can assume the availability of any comparison relation with two 
operands; e.g., .LE for less than or equal to and .GT for greater than. 

 
Using the predicated instructions described above, write the three basic blocks of the following 
code fragment as a single basic block; i.e., eliminate all branches using predicated instructions. 

 
SUB R1, R13, R14 
BLT R1, R4, L1 //branch if R1 < R4 
ADDI R2, R2, #1 
SW R2, 0(R7) 
J L2 

L1: DIV.D F0, F0, F2 
ADD.D  F0, F4, F2 
S.D F0, 0(R8) 

L2: ... 
 

Solution: 
The code fragment with predicated instructions is as below 

(1) SUB R1, R13, R14 
(2) CMP.LT pT, pF = R1, R4 
(3) (pF) ADDI R2, R2, #1 
(4) (pF) SW R2, 0(R7) 
(5) (pT) DIV.D F0, F0, F2 
(6) (pT) ADD.D F0, F4, F2 
(7) (pT) S.D 0(R8), F0 

L2: . . . 
 

Grading: 1/2 point for correctly translating each of the 8 instructions in the original code. (Note that 
for the jump instruction, J, the correct translation is to not have any instruction.) 
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ONLY GRADUATE STUDENTS SHOULD SOLVE THE NEXT PROBLEM. 

Problem 6 [7 points] 

Consider the following loop: 

LOOP: ADD RA, R*, R* 
SRA RB, RA 
ADD RC, RB, R* 
SLA RD, RC 
SUB   RE, RD, R* 
BNE RF, RE LOOP 

 
You need not concern yourself with the actual action of the loop or whether it is doing anything 
useful. Focus only on the dependences in the loop. Here all registers marked as R* indicate that 
there are no dependences for them and you need not care about them. Note that there are no RAW 
dependences across loop iterations. Assume the loop executes 10 times. 

 
Part A [2 points] 

 
Consider a machine that uses Tomasulo’s algorithm for dynamic scheduling with renaming. 
Suppose the machine does not support speculation and so stalls on all branches until they are 
resolved. Suppose the machine can fetch, decode, and issue (to the reservations stations) an 
unbounded number of instructions per cycle and has infinite functional units. How large an 
instruction window must the machine support to best exploit ILP in this code? Assume that the 
instruction window size can only be a multiple of six. Recall that the instruction window refers to 
the total number of instructions in flight at a time. Justify your answer and clearly state any 
assumptions you make. 

 
Solution: 
Due to the long dependence, instructions of a given iteration are serialized and none of them can 
execute out of order. Using an instruction window larger than the loop iteration will not be of 
benefit since the machine does not use speculation and the direction of the branch is dependent 
on the rest of the loop computation. Therefore, an instruction window size of 6 would be 
appropriate. 

 
Grading: 2 points for the correct size and justification. 
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Part B [2 points] 
 

Suppose now that the machine in part (A) supports speculation and has a magical branch 
predictor with 100% accuracy. How would your answer to part (A) change? 

 
 
Solution: Each iteration of the loop is independent of the others, so all iterations can be executed 
in parallel. So to achieve maximum performance, an issue window of 60 should be used. 
 
Grading: 2 points for the correct size and justification. 

 
 
 
 
 
 

Part C [3 points] 
 

You are now told of some new research that does not require stalling on RAW dependences 
(e.g., value prediction allows speculation on values, and triggers a rollback if the speculation was 
wrong). Now how would your answer to part (B) change? Do you expect to see a change in IPC 
from part (B) to part (C)? Again, be sure to justify your answers. 

 
Solution: 
The answer to part (B) would remain the same. Instruction window size would still be 60 for the 
same reason as above. Since dependences in each iteration are broken via value prediction, IPC 
would be expected to increase provided that the value predictor has a reasonable prediction rate. 

 
Grading: 1.5 points for the statement about instruction window size, 1.5 points for the 
statement about IPC. The comment about value prediction rate is not required. 3 points total. 
 


