
Intel Xeon Phi Processor
Binyao Jiang, Michael Schoen, Jingyuan Zhang

Brief introduction of Xeon Phi[4]

● Origin

First generation: PCIe coprocessor
 Second generation: a standard CPU

● Performance

Good sequential and parallel performance

● Many-cores Processor

The Xeon Phi has 72 cores. Compare that to an Intel-9900K (a modern high-end desktop processor)
which has 8.

The 5 main components[1]

The Xeon Phi is made up 32 tiles. Each of these tiles is made up with 5 main
components

1) Front-end unit
a) Handles fetching and decoding instructions

2) Allocation unit
a) Assigns necessary pipelines resources

3) Integer Execution Unit
a) Executes integer micro-ops

4) Memory Execution Unit
a) Executes Memory micro-ops, as well as instruction cache misses

5) Vector processing unit
a) Executes floating-point and integer division instructions

Title Architecture

Core and VPU Dataflow Block Diagram

Front-end Unit Details
● 32-Kbyte instruction cache

● 48-entry instruction TLB

● Dual Issue

● Translates CISC instructions into RISC instructions (aka micro-ops)

● Uses a gskew-style branch predictor (more on that on the next slide)

● Micro-ops are placed into a 32-entry instruction queue for the allocation unit

Gskew Branch Prediction[2]

● As we learned in class, correlating predictors combine address and global

information to provide better prediction

● Exactly how we combine the global history and address effects aliasing

behavior

○ This method is known as the mapping function

● Two mapping function examples are gselect, which concatenates address

and history, and gshare, which XOR’s address and history

Gskew Branch Prediction

Gskew Branch Prediction
● Gskew takes advantage of fact that different mapping functions lead to

different conflicts
● Gskew uses an odd number of branch-predictor banks, each with a different

mapping function
● A majority vote is used to select a final branch direction

Allocation Unit[1]

● Reads two micro-ops from the instruction queue at a time
● Assigns the following resources required by the micro-ops

○ Reorder buffer entries (72)
○ Rename buffer entries (72)
○ Store data buffers (16)
○ Gather-scatter table entries (4)
○ Reservation station entries

● All these are familiar except gather-scatter table entries
○ Large vectors of data are ideally stored in contiguous memory, but this cannot be guaranteed
○ Gather-scatter entries point to blocks of memory to be used as buffers for data that is

scattered in memory

Ideal[5]

Scattered Data

Integer Execution Unit[1]

● Each core has 2 IEUs

○ One can execute any integer micro-op, the other can only execute one-cycle latency

instructions

● IEUs operate on 16 general-purpose registers

● Each IEU has a 12-entry reservation station that issues one micro-op per

cycle

○ Fully out of order scheduling

Vector Processing Unit
● Each core has 2 VPU’s to handle floating-point and integer divides

● Together, they can provide a peak of 64 single-precision or 32

double-precision floating point operations per cycle

● Each VPU contains a 20-entry reservation station that, like the IEU, issues

one micro-op per cycle out of order

○ One slight difference is that the reservation station entries for the VPU do not store source

data

Instruction Set Architecture Improvements

● AVX-512: 512-bit SIMD
instruction

○ 8x 64-bit INTs
○ 16x 32-bit INTs
○ 8x double precision FPNs
○ 16x single precision FPNs

● AVX-512F: foundation
● AVX-512CD: conflict-detection
● AVX-512ER: exponential and

reciprocal
● AVX-512PF: prefetch

Memory Hierarchy

● Memory execution unit
○ issued in-order, execute and complete

out of order
○ recycle buffer
○ supports unaligned memory accesses
○ contains specialized logic

Two levels of memory

● MCDRAM: multi-channel
DRAM

○ a stacked DRAM architecture
○ provides many more channels

● DDR: Double Data Rate
memory

Three memory modes
● Cache mode

■ MCDRAM is configured as a memory-side cache for the entire DDR memory
■ Modified, exclusive, garbage, invalid protocol

● Flat mode
■ regular memory mapped in the same system address space

● Hybrid mode
■ split either half or a quarter of the MCDRAM as cache; the rest is used as flat memory

Threading
● Supports up to four hardware contexts or threads per core
● Resources are divided using 3 techniques

a. Dynamic Partitioning
■ ROB
■ Rename Buffer
■ Reservation Stations
■ Store Data Buffers
■ Instruction Queue
■ Gather-scatter table entries

b. Shared Resources
■ TLB
■ Branch Predictor

c. Replication
■ Rename Tables

Interconnection Network

Tile

Mesh Architecture

DDR
Controller

MCDRAM
Controller

Cache Consistency Model[3]

● MESIF Protocol:

○ Modified, Exclusive, Shared, Invalid, Forward

○ No Owned State (dirty cache block)
● Forward State (specialized S state):

○ Clean cache block

○ Directly forward shared data instead of going to memory

○ Directly forward shared data instead of requesting all the shared caches

○ *Can co-exist with owned state

Mesh Routing (YX Routing Rule)[1]

Benefits:
1. Reduce deadlock cases
2. Simplify the protocol

Mesh Cluster Modes
● Different levels of MEM address affinity to improve performance

● Affinity: tiles, directories and memories

● Local cluster access -> lower latency & higher throughput

● *Selectable from BIOS at boot time

All-to-all Mode

● No affinity

● Most general mode

● Lowest performance

Quadrant Mode

● Affinity between
directory and memory

● TD accesses MEM in
the same quadrant

● Default mode

● Required: symmetric
MEM

Sub-NUMA Clustering (SNC)

● NUMA: non-uniform
memory access

● Expose chip as 2/4
NUMA domains

● Affinity among tile,
directory and memory

● Best performance if
APP is NUMA-aware

References Slide
[1] Sodani, Avinash, et al. "Knights landing: Second-generation intel xeon phi product." Ieee micro 36.2 (2016): 34-46.
[2] Michaud, Pierre, André Seznec, and Richard Uhlig. "Trading conflict and capacity aliasing in conditional branch predictors." ACM SIGARCH
Computer Architecture News. Vol. 25. No. 2. ACM, 1997.
[3] Hum, Herbert H. J., and James R. Goodman. Forward State for Use in Cache Coherency in a Multiprocessor System. 18 Mar. 2003.
[4] Rahman, Rezaur. “Intel® Xeon Phi™ Core Micro-Architecture.” Intel, Intel, 15 Oct. 2019,
software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture.
[5] Moyer, Bryon. “How Does Scatter/Gather Work?” EEJournal, 9 Feb. 2017, www.eejournal.com/article/20170209-scatter-gather/.

