Nvidia Turing GPU

Haocheng Hua (hh7)
Hassan Dbouk (hdbouk?2)

Mario Lopez Gonzalez (mariol4)

CPUs vs GPUs

CPU (Multiple Cores)

' ™

e CPUs are general purpose processors

4 3

Core 2

Core 1

* They excel at performing different types of
tasks that are sequential in nature

e OS kernels, web browsing, text editing, ...

Core 4 Core 3

Cache

* Often contain sophisticated control logic
(branch prediction, scheduling, ...) and massive
caches (for lower latency)

System Memory

lr
g \

CPUs vs GPUs

CPU (Multiple Cores)

' ™

e CPUs are general purpose processors

4 3

Core 2

Core 1

* They excel at performing different types of
tasks that are sequential in nature

e OS kernels, web browsing, text editing, ...

Core 4 Core 3

Cache

* Often contain sophisticated control logic
(branch prediction, scheduling, ...) and massive
caches (for lower latency)

System Memory

.

Jack of all trades, master of none!

lr
w _

Emerging Applications

* Dedicated processors are required to support
emerging applications such as:
* High performance computing
* Artificial intelligence — neural networks
e Graphics rendering — gaming, CGI, multimedia editing

Rendering Graphics High Performance Computing Artificial Intelligence

Wi ,, E — 1

Emerging Applications

* Dedicated processors are required to support
emerging applications such as:
* High performance computing
* Artificial intelligence — neural networks
e Graphics rendering — gaming, CGI, multimedia editing

High Performance Computing Artificial Intelligence

/i

High data parallelism and repetitive operations!

GPUs — Overview

 Moderate clock frequency

* Small caches

* To boost memory throughput

* Simple control

* No branch prediction
* No data forwarding

* Energy efficient ALUs

GPU (Hundreds of Cores)

™\

* Many, long latency but heavily pipelined

for high throughput

* Require massive number of threads to
tolerate latencies

7

Device Memory

[e)] |
\.

Nvida GPU: Turing (TU102) Overall Architecture

» Base Ref CLK Freq/ Boost CLK Freq — 1455MHz/1770MHz

* 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

e 72 Streaming Multiprocessor (SM)

e 12 X (1 Memory Controller —512KB L2 Cache)

* 384-bit 7 GHz GDDR6 Ref [1] 7

PCI Express 3.0 Host Interface

GigaThread Engine

High-Speed Hub

X T
NVLink — Two x8 Links

Base Ref CLK Freq/ Boost CLK Freq — 1455MHz/1770MHz

18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area
72 Streaming Multiprocessor (SM)

12 X (1 Memory Controller —512KB L2 Cache)

384-bit 7 GHz GDDR6

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 —

LDIST LOST LDIST LDIST SFU

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 —

Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 —

LDIST LDIST LDST LD/ST SFU

Warp Scheduler + Dispatch (32 throadiclk)

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 —

RT CORE

TU102 Overall Architecture

J8|jonuon Alowayy

o
E i
s 2

;
5 H
4 i

2

5 H
Sl wm— wm— wm— = T wm W W m = T T w W W H
[N v core o [vcone [econs s cone o Rl vcous [o cone [e cone s con [o con [wco Jf ercons s cors R cors [cone i v coes Jlivico Y
H

» Base Ref CLK Freq/ Boost CLK Freq — 1455MHz/1770MHz

* 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

e 72 Streaming Multiprocessor (SM)

* 12 X (1 Memory Controller — 512KB L2 Cache)

» 384-bit 7 GHz GDDR6 9

TU102 Overall Architecture

\\
\\\
\ss
\\ PCI Express 3.0 Host Interface

N,
GigaThread Engine

* PCl Express 3.0 Host Interface

* Giga Thread Engine

e 2 NVLINK Channels

* Raster Engine / PolyMorph Engine / ROP Unit

TU102 Overall Architecture

{ [o e e o o || o e e e e e High-Speed Hub
H f = = &

NVLink — Two x8 Links

————
————

§||= W oW w W W W W w w w
f | == rcone i wrcone Y w1cone [wrcone [ercons g wroone [waone | = =3
H

-
————
————

-
————
————

————
————
=

* PCl Express 3.0 Host Interface

* Giga Thread Engine

* 2 NVLINK Channels (50GB/sec bidirectional bandwidth per link)
* Raster Engine / PolyMorph Engine / ROP Unit

11

TU102 Overall Architecture

PCI Express 3.0 Host Interface

GigaThread Engine

3 =3 =

™ ™ aw

=3

s s
Fastor Engine

High-Speed Hub

X T
NVLink — Two x8 Links

PCI Express 3.0 Host Interface

Giga Thread Engine

2 NVLINK Channels

Raster Engine / PolyMorph Engine / ROP Unit

SM SM SM SM SM sMm
RT CORE RT CORE RT CORE RT CORE RT CORE RT CORE

SM SM SM SM SM SM

PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine

- -

Raster Engine

12

SM Architecture — Key Features

INT32 FP32

LOIST LD/ST LO/ST LOIST SFU LDIST LD/ST LDIST LOIST SFU
96KB L1 Data Cache / Shared Memory
Tex Tex Tex Tex

* 4 Processing Blocks(PB)
* 4 X 64 KB Register File

* 96KB Configurable Unified L1 Cache/Shared
Memory(64KB+32KB or 32KB+64KB)

* 4 X4 LD/ST Units

e 4 X 1 Special Function Unit(SFU), sin, cos,
etc.

* RT CORE + 4 Texture Unit(TMU)

* 4 X Warp Scheduler + Dispatch(32
Thread/Clk)

*4 X 16 Int32/16 Fp32 Datapath
*4 X 2 Tensor Cores

13

New Feature - Concurrent FP and Int Execution

CONCURRENT
EXECUTION

1.4
t INT PIPE
1
0.8
0.4 FP PIPE
0.2
1]

Per 100 FP instructions,
average 36 INT PIPE instructions
(ieiadd, select, fp min/max, compare etc)

(INT + FP instructions) / FP instructions
=
o

Battlefleld1

FarCry 5

GTAYV
TheDivision

14 TFLOPS + 14 TIOPS

14

New Feature — Tensor Cores with Int8 and Int4
precision model

PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE
FP16 INT 8 INT 4

LA
SIEEEEE

Precision Throughput(T

’3§§§:' 32 Model OPS)
FP 16 144
i Int 8 288
7 Int 4 455
_ Ref [5]
Pascal Turing Tensor Core

15

Speedup compared with Pascal GPU and CPU
Server

Peak Performance Speech Inference Video Inference Language Inference

260 T
130 S a S
100
10
63 4%

float int8 int4 CPU Server M Tesla P4 MTeda T4 CPUServer M Tesla P4 M Tesla T4 CPU Server MTeslaP4 MTesda T4
T4

36

0
e
2
=}
=

Speedup v. CPU Server
Speedup v. CPU Server
Speedup v. CPU Server

speedup: 36X

Ref [5]

16

Nvidia GPU: Programming & ISA

Nvidia GPUs can be programmed using CUDA (Compute Unified
Device Architecture), a C++ like language developed by Nvidia.

GPU computation relies on multi-threaded programming, which
explains why CUDA programming is thread-centric.

A compiler translates CUDA code into the Parallel Thread
Execution (PTX) virtual ISA, which guarantees compatibility across
generations of GPUs.

PTX instructions describe the operations on a single CUDA Thread
and usually map one-to-one with hardware instructions

Ref [3] 7

DAXPY: CUDA vs C

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{
for (inti=0;1<n; ++1)
ylil=a*x[1]+yl[il;

// Invoke DAXPY with 256 threads per Thread Block

~_host___

int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

~_global__

void daxpy(int n, double a, double *x, double *y)

{
int i =Dblockldx.x*blTockDim.x + threadldx.x;
it (i<n)ylil=a*x[i]+yli]l;

}

Using C for CPU

Using CUDA for
Nvidia GPU

Ref [3] 18

DAXPY: Using PTX

shl.u32 R8, blockIdx, 8 : Thread Block ID * Block size

: (256 or 28)
add.u32 R8, R8, threadIdx ; R8 =1 =my CUDA Thread ID
shl.u32 R8, R8, 3 : byte offset

1d.global.f64 RDO, [X+RS1: RDO = X[1]
1d.qlobal .64 RD2. [Y+R81: RD2 = Y[i]

mul.f64 RDO, RDO, RD4 : Product in RDO = RDO * RD4
: (scalar a)
add.f64 RDO, RDO, RDZ » Sum in RDO=RDO + RD2 (Y[i])

st.global.fed4 [Y+R8], RDO; Y[i]=sum (X[i]J*a+Y[i])

e Each thread executes the above code

* The conditional branch code is omitted for simplicity

Ref [3] w9

Multi Threading

* GPUs can be classified as single-instruction multiple-
thread (SIMT)

* Independent thread scheduling allows the GPU to yield

execution of any thread
X; Y; 7 &

B; Z;

if (threadidx.x < 4) {
A;

B;

} else {
X;
Y;

3
Z;

» Time

Ref [2] 20

GPU Memory hierarchy

Private to every SM

Private to every processing block :

r] [16 KiB LO instruction cache]

[96 KiB L1 data cache/shared memory] [2 KiB L1 constant cache]

d

i

[~46 KiB L1.5 constant cache/L1 instruction cache

[4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

l

3 M

~16 GiB GDDR6

Ref [4] 21

Registers

Private to every SM

Private to every processing block :

|
; ﬁ 1
|
I 64 KiB registers [16 KiB LO instruction cache J 1
| 1

| e —

[96 KiB L1 data cache/shared memory] [2 KiB L1 constant cache]

d N

[~46 KiB L1.5 constant cache/L1 instruction cache

\
[4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

_— —

~16 GiB GDDR6

Registers

Two types of registers

* Uniform Registers (separate, integer-only, scalar datapath in parallel
with main datapath)

* Regular Registers
Register files divided in two banks with dual 32-bit ports each.

Each port only supports one 32-bit read per cycle.

Problem?

Ref [1] 23

Registers

Two types of registers

* Uniform Registers (separate, integer-only, scalar datapath in parallel
with main datapath)

* Regular Registers
Register files divided in two banks with dual 32-bit ports each.

Each port only supports one 32-bit read per cycle.

Problem?

* Instructions requiring 3 operands (e.g. FFMA) will suffer a stall if the
three operands map to the same bank due to a register bank conflict

Ref [1] 24

Register Bank Conflict

Elapsed Time (us)

8.5

7.5

6.5

5.5

PRI .. $op e R I
--------- FFMA R6, R98, R99, RX
° FFMA R6, R97, R99, RX
! | | | | | | | | |
100 102 104 106 108 110 112 114 116 118 120

Register Index of RX

Ref [4] 25

Cache

Non-LRU replacement policy

It aims at preserving large arrays
from eviction caused by sparse
memory access

L1 data cache can be either
32 or 64 KiB (configurable
by the user)

L1 data cache line size: 16 B

L1 data cache indexed by
virtual addresses

L2 cache 16-way set
associative

L2 data cache line size: 32 B

L2 data cache indexed by
physical addresses

e T T N T T T TN TNTNTET T T TTOTTTT

Private to every processing block !

1

1 1
1 1
1 [64 KiB registers] I 16 KiB LO instruction cache §1
1 1

Ref [4] 26

Cache Performance

L1 cache hit: 32 cycles

L2 cache hit: 188 cycles

L2 miss and TLB hit: 296 cycles

L2 miss and TLB miss: 616 cycles

Latency (clock cycles)

616

296

188

128

64

32

J

lll

96 128 160 192 224

Relative memory address Byte

Ref [4] 27

256

Constant Memory

What is the constant memory?

3 levels of constant cache

L1 uses a non-LRU replacement
policy

It supports broadcasting, when all
threads within a warp access:

The same address: data is sent
simultaneously

Diverging addresses: the accesses are
serialized

e e e S e Em S S S Em EE S Sm Em S e e e em Em RS Gm Em Em Em A

Private to every processing block :

1
1
1
1 [64 KiB registers] [16 KiB L0 instruction cache] 1
1 1

1
1
1
1
1
1
1
1
1 [96 KiB L1 data cache/shared memory] 2 KiB L1 constant cache I
1
1
1
1
1

H ~46 KiB L1.5 constant cache/L1 instruction cache

4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

T

[~16 GiB GDDR®6]

28

Constant Memory

What is the constant memory?
__constant__ keyword

Kernel invocation parameters

Immediate constants

3 levels of constant cache

L1 uses a non-LRU replacement
policy

It supports broadcasting, when all
threads within a warp access:

The same address: data is sent
simultaneously

Diverging addresses: the accesses are
serialized

e e e S e Em S S S Em EE S Sm Em S e e e em Em RS Gm Em Em Em A

Private to every processing block :

1

1

[

[

1

[11
[X 11
1 [

: 1 [64 KiB registers] [16 KiB L0 instruction cache] [
11 L
L T ey (e e -—- 11
1 [
1 [
1 [96 KiB L1 data cache/shared memory] 2 KiB L1 constant cache [
1 [
1 11
1 [
: H ~46 KiB L1.5 constant cache/L1 instruction cache : :
T e A M [
1

4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

T

[~16 GiB GDDR®6]

29

Performance of Constant Memory

Latency (clock)

600

500

400

300

200

100

TU104

—— L2 const
—=— 1.5 const
—— L1 const

1

2

Addresses accessed by threads within one warp

4

8

16

32

Ref [4] 30

Shared Memory

———

Private to every processing block :

I
I
¢ Shared among threads i [_ 64 KiB registers] [16 KiB LO instruction cache] 1

within a thread block ' i

Either 64KiB or 32KiB
(configurable by the .
user)

[4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

| i i

[~16 GiB GDDR6]

31

Global Memory

GDDR6 memory

Lower bandwidth but higher
clock rate compared to previous
GPUs using an HBM memory

Size: 15,079 MiB
Max Clock Rate: 5,001 MHz
Theoretical Bandwidth: 320 GiB/s

P mm m mm e Em am Em Em Em Em EE Em EE Em A S e S e S S Em S am e Sm A Em A e A s s

Private to every processing block :

] [16 KiB L0 instruction cache] 1

[96 KiB L1 data cache/shared memory] [2 KiB L1 constant cache]

1

[~46 KiB L1.5 constant cache/L1 instruction cach

________ -

[4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

T i i

~16 GiB GDDR6

References

e [1] Nvida Turing GPU Architecture:
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf

e [2] Nvida Tesla V100 (Volta) GPU Architecture:
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

* [3] Hennessy, John L., and David A. Patterson. Computer architecture: a
quantitative approach. 6t edition.

* [4] Jia, Zhe, et al. "Dissecting the NVidia Turing T4 GPU via
Microbenchmarking." arXiv preprint arXiv:1903.07486 (2019).

e [5] Burgess, John. "RTX ON-The NVIDIA TURING GPU." 2019 IEEE Hot
Chips 31 Symposium (HCS). IEEE, 2019.

33

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

