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CPUs vs GPUs

• CPUs are general purpose processors

• They excel at performing different types of 
tasks that are sequential in nature
• OS kernels, web browsing, text editing, …

• Often contain sophisticated control logic 
(branch prediction, scheduling, …) and massive 
caches (for lower latency)
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• CPUs are general purpose processors

• They excel at performing different types of 
tasks that are sequential in nature
• OS kernels, web browsing, text editing, …

• Often contain sophisticated control logic 
(branch prediction, scheduling, …) and massive 
caches (for lower latency)

Jack of all trades, master of none!
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Emerging Applications

• Dedicated processors are required to support 
emerging applications such as:
• High performance computing 

• Artificial intelligence – neural networks

• Graphics rendering – gaming , CGI, multimedia editing

High Performance ComputingRendering Graphics Artificial Intelligence
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Emerging Applications

• Dedicated processors are required to support 
emerging applications such as:
• High performance computing 

• Artificial intelligence – neural networks

• Graphics rendering – gaming , CGI, multimedia editing

High Performance ComputingRendering Graphics Artificial Intelligence

High data parallelism and repetitive operations!
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GPUs – Overview 

• Moderate clock frequency

• Small caches
• To boost memory throughput

• Simple control
• No branch prediction
• No data forwarding

• Energy efficient ALUs
• Many, long latency but heavily pipelined 

for high throughput

• Require massive number of threads to 
tolerate latencies 
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Nvida GPU: Turing (TU102) Overall Architecture

• Base Ref CLK Freq/ Boost CLK Freq – 1455MHz/1770MHz

• 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

• 72 Streaming Multiprocessor (SM)

• 12 X (1 Memory Controller – 512KB L2 Cache)

• 384-bit 7 GHz GDDR6 7Ref [1]
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• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels 

• Raster Engine / PolyMorph Engine / ROP Unit 

TU102 Overall Architecture

10



TU102 Overall Architecture

• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels (50GB/sec bidirectional bandwidth per link)

• Raster Engine / PolyMorph Engine / ROP Unit 
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TU102 Overall Architecture

• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels 

• Raster Engine / PolyMorph Engine / ROP Unit
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SM Architecture – Key Features   

• 4 Processing Blocks(PB)

• 4 X 64 KB Register File

• 96KB Configurable Unified L1 Cache/Shared 
Memory(64KB+32KB or 32KB+64KB)

• 4 X 4 LD/ST Units

• 4 X 1 Special Function Unit(SFU), sin, cos, 
etc. 

• RT CORE + 4 Texture Unit(TMU)

• 4 X Warp Scheduler + Dispatch(32 
Thread/Clk) 

• 4 X 16 Int32/16 Fp32 Datapath

• 4 X 2 Tensor Cores 
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New Feature - Concurrent FP and Int Execution

14 TFLOPS + 14 TIOPS
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Precision 
Model

Throughput(T
OPS)

FP 16 144

Int 8 288

Int 4 455

New Feature – Tensor Cores with Int8 and Int4 
precision model

Ref [5]
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Speedup compared with Pascal GPU and CPU 
Server
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Nvidia GPU: Programming & ISA

• Nvidia GPUs can be programmed using CUDA (Compute Unified 
Device Architecture), a C++ like language developed by Nvidia.

• GPU computation relies on multi-threaded programming, which 
explains why CUDA programming is thread-centric.

• A compiler translates CUDA code into the Parallel Thread 
Execution (PTX) virtual ISA, which guarantees compatibility across 
generations of GPUs. 

• PTX instructions describe the operations on a single CUDA Thread 
and usually map one-to-one with hardware instructions
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DAXPY: CUDA vs C

Using C for CPU

Using CUDA for 
Nvidia GPU
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DAXPY: Using PTX

• Each thread executes the above code

• The conditional branch code is omitted for simplicity 
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Multi Threading

• GPUs can be classified as single-instruction multiple-
thread (SIMT)

• Independent thread scheduling allows the GPU to yield 
execution of any thread
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GPU Memory hierarchy
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Registers
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• Two types of registers

• Uniform Registers (separate, integer-only, scalar datapath in parallel 
with main datapath)

• Regular Registers

• Register files divided in two banks with dual 32-bit ports each.

• Each port only supports one 32-bit read per cycle.

• Problem?

Registers
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• Two types of registers

• Uniform Registers (separate, integer-only, scalar datapath in parallel 
with main datapath)

• Regular Registers

• Register files divided in two banks with dual 32-bit ports each.

• Each port only supports one 32-bit read per cycle.

• Problem?

• Instructions requiring 3 operands (e.g. FFMA) will suffer a stall if the 
three operands map to the same bank due to a register bank conflict

Registers
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Register Bank Conflict

25Ref [4]



• Non-LRU replacement policy
It aims at preserving large arrays 
from eviction caused by sparse 
memory access

• L1 data cache can be either 
32 or 64 KiB (configurable 
by the user)

• L1 data cache line size: 16 B

• L1 data cache indexed by 
virtual addresses

• L2 cache 16-way set 
associative

• L2 data cache line size: 32 B

• L2 data cache indexed by 
physical addresses

Cache
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• L1 cache hit: 32 cycles

• L2 cache hit: 188 cycles

• L2 miss and TLB hit: 296 cycles

• L2 miss and TLB miss: 616 cycles

Cache Performance
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• What is the constant memory?

• 3 levels of constant cache

• L1 uses a non-LRU replacement 
policy

• It supports broadcasting, when all 
threads within a warp access:

• The same address: data is sent 
simultaneously

• Diverging addresses: the accesses are 
serialized

Constant Memory
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• What is the constant memory?
__constant__ keyword

Kernel invocation parameters

Immediate constants

• 3 levels of constant cache

• L1 uses a non-LRU replacement 
policy

• It supports broadcasting, when all 
threads within a warp access:

• The same address: data is sent 
simultaneously

• Diverging addresses: the accesses are 
serialized

Constant Memory
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Performance of Constant Memory
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• Shared among threads 
within a thread block

• Either 64KiB or 32KiB 
(configurable by the 
user)

Shared Memory
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• GDDR6 memory

• Lower bandwidth but higher 
clock rate compared to previous 
GPUs using an HBM memory

• Size: 15,079 MiB

• Max Clock Rate: 5,001 MHz

• Theoretical Bandwidth: 320 GiB/s

Global Memory
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