
Nvidia Turing GPU

Haocheng Hua (hh7)

Hassan Dbouk (hdbouk2)

Mario Lopez Gonzalez (mariol4)

1

CPUs vs GPUs

• CPUs are general purpose processors

• They excel at performing different types of
tasks that are sequential in nature
• OS kernels, web browsing, text editing, …

• Often contain sophisticated control logic
(branch prediction, scheduling, …) and massive
caches (for lower latency)

2

CPUs vs GPUs

• CPUs are general purpose processors

• They excel at performing different types of
tasks that are sequential in nature
• OS kernels, web browsing, text editing, …

• Often contain sophisticated control logic
(branch prediction, scheduling, …) and massive
caches (for lower latency)

Jack of all trades, master of none!

3

Emerging Applications

• Dedicated processors are required to support
emerging applications such as:
• High performance computing

• Artificial intelligence – neural networks

• Graphics rendering – gaming , CGI, multimedia editing

High Performance ComputingRendering Graphics Artificial Intelligence

4

Emerging Applications

• Dedicated processors are required to support
emerging applications such as:
• High performance computing

• Artificial intelligence – neural networks

• Graphics rendering – gaming , CGI, multimedia editing

High Performance ComputingRendering Graphics Artificial Intelligence

High data parallelism and repetitive operations!
5

GPUs – Overview

• Moderate clock frequency

• Small caches
• To boost memory throughput

• Simple control
• No branch prediction
• No data forwarding

• Energy efficient ALUs
• Many, long latency but heavily pipelined

for high throughput

• Require massive number of threads to
tolerate latencies

6

Nvida GPU: Turing (TU102) Overall Architecture

• Base Ref CLK Freq/ Boost CLK Freq – 1455MHz/1770MHz

• 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

• 72 Streaming Multiprocessor (SM)

• 12 X (1 Memory Controller – 512KB L2 Cache)

• 384-bit 7 GHz GDDR6 7Ref [1]

TU102 Overall Architecture

• Base Ref CLK Freq/ Boost CLK Freq – 1455MHz/1770MHz

• 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

• 72 Streaming Multiprocessor (SM)

• 12 X (1 Memory Controller – 512KB L2 Cache)

• 384-bit 7 GHz GDDR6 8

TU102 Overall Architecture

• Base Ref CLK Freq/ Boost CLK Freq – 1455MHz/1770MHz

• 18.6 billion transistors on TSMC’s 12 nm FFN Process with 754mm2 die area

• 72 Streaming Multiprocessor (SM)

• 12 X (1 Memory Controller – 512KB L2 Cache)

• 384-bit 7 GHz GDDR6 9

• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels

• Raster Engine / PolyMorph Engine / ROP Unit

TU102 Overall Architecture

10

TU102 Overall Architecture

• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels (50GB/sec bidirectional bandwidth per link)

• Raster Engine / PolyMorph Engine / ROP Unit

11

TU102 Overall Architecture

• PCI Express 3.0 Host Interface

• Giga Thread Engine

• 2 NVLINK Channels

• Raster Engine / PolyMorph Engine / ROP Unit

12

13

SM Architecture – Key Features

• 4 Processing Blocks(PB)

• 4 X 64 KB Register File

• 96KB Configurable Unified L1 Cache/Shared
Memory(64KB+32KB or 32KB+64KB)

• 4 X 4 LD/ST Units

• 4 X 1 Special Function Unit(SFU), sin, cos,
etc.

• RT CORE + 4 Texture Unit(TMU)

• 4 X Warp Scheduler + Dispatch(32
Thread/Clk)

• 4 X 16 Int32/16 Fp32 Datapath

• 4 X 2 Tensor Cores

14

New Feature - Concurrent FP and Int Execution

14 TFLOPS + 14 TIOPS

15

Precision
Model

Throughput(T
OPS)

FP 16 144

Int 8 288

Int 4 455

New Feature – Tensor Cores with Int8 and Int4
precision model

Ref [5]

16

Speedup compared with Pascal GPU and CPU
Server

Ref [5]

Nvidia GPU: Programming & ISA

• Nvidia GPUs can be programmed using CUDA (Compute Unified
Device Architecture), a C++ like language developed by Nvidia.

• GPU computation relies on multi-threaded programming, which
explains why CUDA programming is thread-centric.

• A compiler translates CUDA code into the Parallel Thread
Execution (PTX) virtual ISA, which guarantees compatibility across
generations of GPUs.

• PTX instructions describe the operations on a single CUDA Thread
and usually map one-to-one with hardware instructions

Ref [3] 17

DAXPY: CUDA vs C

Using C for CPU

Using CUDA for
Nvidia GPU

18Ref [3]

DAXPY: Using PTX

• Each thread executes the above code

• The conditional branch code is omitted for simplicity

19Ref [3]

Multi Threading

• GPUs can be classified as single-instruction multiple-
thread (SIMT)

• Independent thread scheduling allows the GPU to yield
execution of any thread

20Ref [2]

GPU Memory hierarchy

21Ref [4]

Registers

22

• Two types of registers

• Uniform Registers (separate, integer-only, scalar datapath in parallel
with main datapath)

• Regular Registers

• Register files divided in two banks with dual 32-bit ports each.

• Each port only supports one 32-bit read per cycle.

• Problem?

Registers

23Ref [1]

• Two types of registers

• Uniform Registers (separate, integer-only, scalar datapath in parallel
with main datapath)

• Regular Registers

• Register files divided in two banks with dual 32-bit ports each.

• Each port only supports one 32-bit read per cycle.

• Problem?

• Instructions requiring 3 operands (e.g. FFMA) will suffer a stall if the
three operands map to the same bank due to a register bank conflict

Registers

24Ref [1]

Register Bank Conflict

25Ref [4]

• Non-LRU replacement policy
It aims at preserving large arrays
from eviction caused by sparse
memory access

• L1 data cache can be either
32 or 64 KiB (configurable
by the user)

• L1 data cache line size: 16 B

• L1 data cache indexed by
virtual addresses

• L2 cache 16-way set
associative

• L2 data cache line size: 32 B

• L2 data cache indexed by
physical addresses

Cache

26Ref [4]

• L1 cache hit: 32 cycles

• L2 cache hit: 188 cycles

• L2 miss and TLB hit: 296 cycles

• L2 miss and TLB miss: 616 cycles

Cache Performance

27Ref [4]

• What is the constant memory?

• 3 levels of constant cache

• L1 uses a non-LRU replacement
policy

• It supports broadcasting, when all
threads within a warp access:

• The same address: data is sent
simultaneously

• Diverging addresses: the accesses are
serialized

Constant Memory

28

• What is the constant memory?
__constant__ keyword

Kernel invocation parameters

Immediate constants

• 3 levels of constant cache

• L1 uses a non-LRU replacement
policy

• It supports broadcasting, when all
threads within a warp access:

• The same address: data is sent
simultaneously

• Diverging addresses: the accesses are
serialized

Constant Memory

29

Performance of Constant Memory

30Ref [4]

• Shared among threads
within a thread block

• Either 64KiB or 32KiB
(configurable by the
user)

Shared Memory

31

• GDDR6 memory

• Lower bandwidth but higher
clock rate compared to previous
GPUs using an HBM memory

• Size: 15,079 MiB

• Max Clock Rate: 5,001 MHz

• Theoretical Bandwidth: 320 GiB/s

Global Memory

32

• [1] Nvida Turing GPU Architecture:
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf

• [2] Nvida Tesla V100 (Volta) GPU Architecture:
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

• [3] Hennessy, John L., and David A. Patterson. Computer architecture: a
quantitative approach. 6th edition.

• [4] Jia, Zhe, et al. "Dissecting the NVidia Turing T4 GPU via
Microbenchmarking." arXiv preprint arXiv:1903.07486 (2019).

• [5] Burgess, John. "RTX ON–The NVIDIA TURING GPU." 2019 IEEE Hot
Chips 31 Symposium (HCS). IEEE, 2019.

References

33

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

