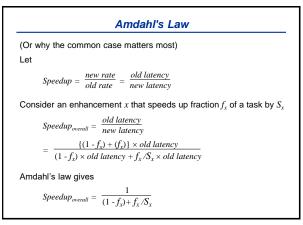

What is comp	uter architecture?
Why study co	mputer architecture?
Common prii	nciples
Performan	ice
What is	s performance: latency, throughput
The pe	rformance equation
Measu	ring performance
Improv	ing performance: parallelism, locality, Amdahl's law
Power	
Cost	
Reliability	

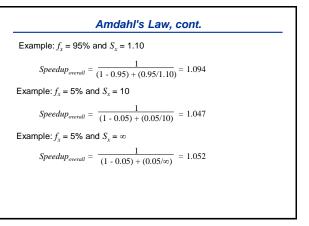
Measuring Performance

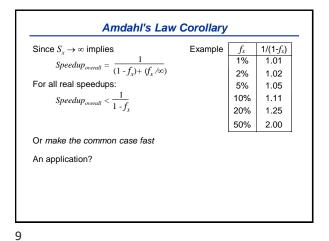
MIPS, MFLOPS don't mean much Benchmarks Real programs Representative of real workload Only way to characterize performance SPEC89 → SPEC92 → SPEC95 → SPEC CPU2000 → CPU2006 → CPU2017 SPECFS, SPECWeb, SPECjbb, SPECvirt_Sc2010, TPC Kernels ``Representative" program fragments Often not representative of full applications EEMBC for embedded systems Toy benchmarks and synthetic benchmarks Don't mean much

5


Improving Performance – Basic Principles

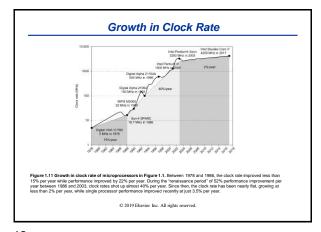
Parallelism


Locality

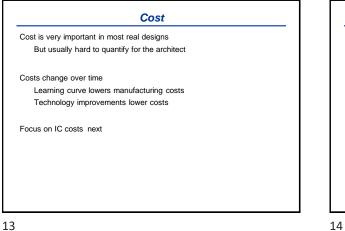

Focus on common case - Amdahl's law

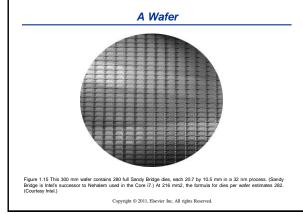
6

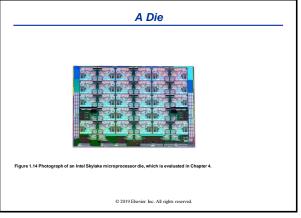
7

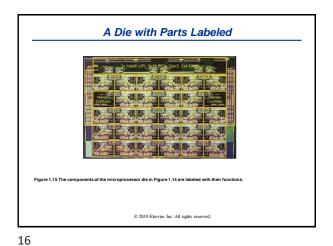


Power		
Power		
Energy		
Temperature		


10

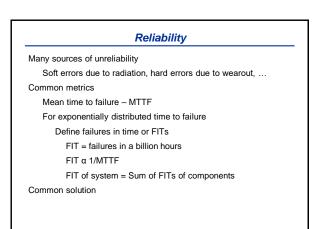

Power and Energy Power = Dynamic power + Static power Energy = Power * Time Dynamic Power ∞ Capacitance * Voltage² * Frequency Static power = Static current * Voltage




11

Power and Energy

 $Cost of IC = \frac{Cost of Die + Cost of Testing + Cost of Packaging}{Final Test Yield}$


Cost of Die = $\frac{Cost \ of \ Wafer}{Dies \ per \ Wafer \times Die \ Yield}$

Dies per Wafer = $(\frac{\pi \times (Wafer \ Diameter/2)^2}{Die \ Area}) - (Correction \ factor \ for \ Edge \ Effects)$

Die Yield = Wafer Yield $\times \frac{1}{(1 + Defects per unit area \times Die Area)^{\alpha}}$

 α = 10 to 14 for 16nm in 2017

Bottom line: Cost per die grows roughly as the square of the die area Cost different from price; cost of manufacturing different from cost of operation

