Chapter 2: Memory Hierarchy Design (Part 3)

Introduction
Caches
Main Memory (Section 2.2)
Virtual Memory (Section 2.4, Appendix B.4, B.5)

Memory Technologies

Dynamic Random Access Memory (DRAM)

Optimized for density, not speed
One transistor cells
Multiplexed address pins
Row Address Strobe (RAS)
Column Address Strobe (CAS)
Cycle time > access time
Destructive reads
Must refresh every few ms
Access every row
Sold as dual inline memory modules (DIMMs)

Memory Technologies, cont.

Static Random Access Memory (SRAM)
Optimized for speed, then density
Typically 6 transistors per cell
Separate address pins
Static \Rightarrow No Refresh
Greater power dissipation than DRAM
Access time = cycle time

DRAM Organization

DIMM

Rank

Bank

Array

Row buffer

DRAM Organization

Rank: chips needed to respond to a single request
Assume 64 bit data bus
For 8 bit DRAM, need 8 chips in a rank
For 4 bit DRAM, need 16 chips in a rank
Can have multiple ranks per DIMM
Bank: A chip is divided into multiple independent banks for pipelined access
Array: A bank consists of many arrays, 1 array per bit of output, for parallel access

Row buffer: A "cache" that preserves the last row read from a bank

DRAM Organization

See figure 1.5 in
The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It By Bruce Jacob
Synthesis Lectures on Computer Architecture, Morgan \& Claypool
Series editor: Mark Hill
Downloadable from U of I accounts
https://www.morganclaypool.com/doi/pdfplus/10.2200/S00201ED1V 01Y200907CAC007

Internals of a DRAM Array

See Figure 1.6 of the synthesis lecture
Steps to access a bit
Pre-charge bit lines
Activate row: turn on word line for the row, brings data to sense amps
Column read: send subset of data (columns)
(Restore data)

DRAM Optimizations - Page Mode

Unoptimized DRAM

First read entire row
Then select column from row
Stores entire row in a buffer
Page Mode
Row buffer acts like an SRAM
By changing column address, random bits can be accessed within a row.

DRAM Optimizations - Synchronous DRAM

Previously, DRAM had asynchronous interface
Each transfer involves handshaking with controller
Synchronous DRAM (SDRAM)
Clock added to interface
Register to hold number of bytes requested
Send multiple bytes per request
Double Data Rate (DDR)
Send data on rising and falling edge of clock

Simple Main Memory

Consider a memory with these parameters:
1 cycle to send address
6 cycles to access each word
1 cycle to send word back to CPU/Cache
What's the miss penalty for a 4 word block?
($1+6$ cycles +1 cycle $) \times 4$ words
$=32$ cycles
How can we speed this up?

Wider Main Memory

Make the memory wider
Read out 2 (or more) words in parallel
Memory parameters:
1 cycle to send address
6 cycles to access each doubleword
1 cycle to send doubleword back to CPU/Cache
Miss penalty for a 4 word block:
$(1+6$ cycles +1 cycle $) \times 2$ doublewords
$=16$ cycles
Cost
Wider bus
Larger expansion size

Interleaved Main Memory

Organize memory in banks
Subsequent words map to different banks
Word A in bank (A mod M)
Within a bank, word A in location (A div M)

Word address

How many banks to include?

Interleaved Main Memory**

Organize memory in banks
Subsequent words map to different banks
Word A in bank (A mod M)
Within a bank, word A in location (A div M)

Word address

How many banks to include?
\# banks >= \# clock cycles to access word in a bank

			Best case access time (no precharge)	Precharge needed		
Production year	Chip size	DRAM type	RAS time (ns)	CAS time (ns)	Total (ns)	Total (ns)
2000	256 M bit	DDR1	21	21	42	63
2002	512 M bit	DDR1	15	15	30	45
2004	$1 G$ bit	DDR2	15	15	30	45
2006	$2 G$ bit	DDR2	10	10	20	30
2010	$4 G$ bit	DDR3	13	13	26	39
2016	$8 G$ bit	DDR4	13	13	26	39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for a random memory word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged; if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in 2014, but did not begin production until early 2016.

Standard	I/O clock rate	M transfers/s	DRAM name	MiB/s/DIMM	DIMM name
DDR1	133	266	DDR266	2128	PC2100
DDR1	150	300	DDR300	2400	PC2400
DDR1	200	400	DDR400	3200	PC3200
DDR2	266	533	DDR2-533	4264	PC4300
DDR2	333	667	DDR2-667	5336	PC5300
DDR2	400	800	DDR2-800	6400	PC6400
DDR3	533	1066	DDR3-1066	8528	PC8500
DDR3	666	1333	DDR3-1333	10,664	PC10700
DDR3	800	1600	DDR3-1600	12,800	PC12800
DDR4	1333	2666	DDR4-2666	21,300	PC21300

Figure 2.5 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2016. Note the numerical relationship between the columns. The third column is twice the second, and the fourth uses the number from the third column in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this number is used in the name of the DIMM. DDR4 saw significant first use in 2016.

Figure 2.6 Power consumption for a DDR3 SDRAM operating under three conditions: low-power (shutdown) mode, typical system mode (DRAM is active 30% of the time for reads and 15% for writes), and fully active mode, where the DRAM is continuously reading or writing. Reads and writes assume bursts of eight transfers. These data are based on a Micron 1.5 V 2GB DDR3-1066, although similar savings occur in DDR4 SDRAMs.

Other Technologies

Graphics Data RAMS (GDDR)

Wider (32 bits), higher clock, connect directly to GPUs (soldered to board vs. DIMMs)

Die stacked DRAMs / 3D / High Bandwidth Memory (HBM)

Nonvolatile memory (later)
Flash
Phase change

Reliability: Parity, ECC, chipkill

Figure 2.7 Two forms of die stacking. The 2.5D form is available now. 3D stacking is under development and faces heat management challenges due to the CPU.

Virtual Memory

User operates in a virtual address space, mapping between virtual space and main memory is determined at runtime

Original Motivation
Avoid overlays
Use main memory as a cache for disk
Current motivation
Relocation
Protection
Sharing
Fast startup
Engineered differently than CPU caches
Miss access time $O(1,000,000)$
Miss access time >> miss transfer time

Virtual Memory, cont.

Blocks, called pages, are 512 to 16 K bytes.
Page placement
Fully-associative -- avoid expensive misses
Page identification
Address translation -- virtual to physical address
Indirection through one or two page tables
Translation cached in translation buffer
Page replacement
Approx. LRU
Write strategy
Writeback (with page dirty bit)

Address Translation

Logical Path
Two memory operations
Often two or three levels of page tables
TOO SLOW!

Address Translation

Fast Path
Translation Lookaside Buffer (TLB, TB)
A cache w/ PTEs for data
Number of entries 32 to 1024

Address Translation / Cache Interaction

Address Translation

Cache Lookup

Sequential TLB Access

Address translation before cache lookup

May increase cycle time, CPI, pipeline depth

Parallel TLB Access

Address translation in parallel with cache lookup

Parallel TLB Access

Address translation in parallel with cache lookup
Large Cache

Index taken from virtual page number

Parallel TLB Access**

Address translation in parallel with cache lookup
Large Cache

Could cause problems with synonyms

Virtual Address Synonyms

Virtual Address Space

Physical Address Space

Data

V0	
V1	

Solutions to Synonyms
\square

Solutions to Synonyms**

(1) Limit cache size to page size times assoc

Extract index from page offset

Solutions to Synonyms**

(1) Limit cache size to page size times assoc

Extract index from page offset
(2) Search all sets in parallel
e.g., 64 KB 4way cache w/ 4KB pages

Search 4 sets (16 entries) in parallel

Solutions to Synonyms**

(1) Limit cache size to page size times assoc

Extract index from page offset
(2) Search all sets in parallel
e.g., 64 KB 4way cache w/ 4KB pages

Search 4 sets (16 entries) in parallel
(3) Restrict page placement in operating system

Guarantee that Index(VA) == Index(PA)

Solutions to Synonyms**

(1) Limit cache size to page size times assoc

Extract index from page offset
(2) Search all sets in parallel
e.g., 64 KB 4way cache w/ 4KB pages

Search 4 sets (16 entries) in parallel
(3) Restrict page placement in operating system

Guarantee that Index(VA) == Index(PA)
(4) Eliminate by operating system convention

Single virtual address space
Restrictive sharing model
\square

Virtual Address Cache

Must handle
Virtual address synonyms (aliases)
Virtual address space changes
Status and protection bit changes

Protection

Goal:

One process should not be able to interfere with the execution of another

Process model
Privileged kernel
Independent user processes
Primitives vs. Policy
Architecture provides the primitives
Operating system implements the policy
Problems arise when hardware implements policy

Protection Primitives

User vs. Kernel
At least one privileged mode
Usually implemented as mode bit(s)
How do we switch to kernel mode?
Change mode and continue execution at predetermined location
Hardware to compare mode bits to access rights
Access certain resources only in kernel mode

Protection Primitives, cont.

Base and Bounds

Privileged registers
Base \leq Address \leq Bounds
Pagelevel protection
Protection bits in page table entry
Cache them in TLB

