
Chapter 3 – Instruction-Level Parallelism and 

its Exploitation (Part 3)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)

Limitations of ILP 

Multithreading (Section 3.11)

Putting it Together (Mini-projects)



Beyond Pipelining (Section 3.7)

Limits on Pipelining 

Latch overheads & signal skew 

Unpipelined instruction issue logic (Flynn limit: CPI  1) 

Two techniques for parallelism in instruction issue

Superscalar or multiple issue

Hardware determines which of next n instructions can issue 

in parallel

Maybe statically or dynamically scheduled

VLIW – Very Long Instruction Word

Compiler packs multiple independent operations into an 

instruction



Simple 5-Stage Superscalar Pipeline

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

i+4 IF ID EX MEM WB

i+5 IF ID EX MEM WB

i+6 IF ID EX MEM WB

i+7 IF ID EX MEM WB

i+8 IF ID EX MEM WB

i+9 IF ID EX MEM WB



Superscalar, cont. 

IF Parallel access to I-cache 

Require alignment? 

ID Replicate logic 

Fixed-length instructions? 

HANDLE INTRA-CYCLE HAZARDS 

EX Parallel/pipelined (as before) 

MEM > 1 per cycle? 

If so, hazards & multi-ported D-cache 

WB Different register files? 

Multi-ported register files? 

Progression: Integer + floating-point 

Any two instructions

Any four instructions 

Any n instructions?



Assume two instructions per cycle 

One integer, load/store, or branch 

One floating point 

Could require 64-bit alignment and ordering of instruction pair. 

I F I F F I 

I F F I F I 

OK NOT NOT 

OK OK 

Best case 

CPI = 0.5 

But .... 

Example Superscalar



Superscalar (Cont.)

Hazards are a big problem 

Loads 

Latency is 1 cycle 

Was 1 instruction 

NOW 3 instructions 

Branches 

NOW 3 instructions 

Floating point loads and stores 

May cause structural hazards 

Additional ports? 

Additional stalls? 

Parallelism required = 



Superscalar (Cont.)**

Hazards are a big problem 

Loads 

Latency is 1 cycle 

Was 1 instruction 

NOW 3 instructions 

Branches 

NOW 3 instructions 

Floating point loads and stores 

May cause structural hazards 

Additional ports? 

Additional stalls? 

Parallelism required = superscalar degree x operation latency



VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction 

Like horizontal microcode 

Versus Superscalar 

Static Techniques for ILP - VLIW Processors
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VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction 

Like horizontal microcode 

Versus Superscalar 

+  Issue logic simpler 

+  Potentially exploit more parallelism

- Code size explosion 

- Complex compiler 

- Binary compatibility difficult across generations

Recent VLIWs overcome some problems (e.g., Intel/HP IA-64, TI C6)

VLIW Processors**



Limitations of Multi-Issue Machines

Inherent limitations of ILP 

Difficulties in building hardware 

Increase ports to registers 

Increase ports to memory 

Duplicate FUs 

Decoding in superscalar and impact on clock rate 

Limitations specific to VLIW 

Code size, binary compatibility



Compiler Techniques to Expose ILP

Many compiler techniques exist

Several used for multiprocessors as well

Our focus on techniques specifically for ILP



Loop Unrolling (Section 3.2)

Add scalar to vector 

Loop: L.D F0, 0(R1) 

stall 

ADD.D F4, F0, F2 

stall 

stall 

S.D 0(R1), F4 

DSUBUI R1, R1, #8 

stall

BNEZ R1, Loop

stall

With scheduling

Loop: L.D F0, 0(R1) 

DSUBUI R1, R1, #8

ADD.D F4, F0, F2 

stall

BNEZ R1, Loop ; Assume delayed branch 

S.D 8(R1), F4



Loop Unrolling 

Unrolling the loop

Loop: L.D F0, 0(R1) 

ADD.D F4, F0, F2 

S.D 0(R1), F4 

L.D F6, -8(R1) 

ADD.D F8, F6, F2 

S.D -8(R1), F8 

L.D F10, -16(R1) 

ADD.D F12, F10, F2 

S.D -16(R1), F12 

L.D F14, -24(R1) 

ADD.D F16, F14, F2 

S.D -24(R1), F16 

DSUBUI R1, R1, #32

BNEZ R1, Loop;  Assume delayed branch

Rename registers 

Remove some branch overhead  (calculate intermediate values)



Loop Unrolling

Scheduling the loop for simple pipeline 

Loop: L.D F0, 0(R1) 

L.D F6, -8(R1) 

L.D F10, -16(R1) 

L.D F14, -24(R1) 

ADD.D F4, F0, F2 

ADD.D F8, F6, F2 

ADD.D F12, F10, F2 

ADD.D F16, F14, F2 

S.D 0(R1), F4 

S.D -8(R1), F8 

S.D -16(R1), F12 

DSUBUI R1, R1, #32 

BNEZ R1, Loop ; Assume delayed branch

S.D 8(R1), F16

How to schedule for multiple issue? 



Software Pipelining (Section H.3)

Pipeline loops in software

Pipelined loop iteration

Executes instructions from multiple iterations of original loop

Separates dependent instructions

Less code than unrolling



Software Pipelining – Example

sum = 0.0; 

for (i=1; i<=N; i++) {    ; sum = sum + a[i]*b[i] 

load a[i] ; Ai 

load b[i] ; Bi 

mult ab[i] ; *i 

add sum[i] ; +i 

}

sum = 0.0; 

START-UP-BLOCK 

for (i=3; i<=N; i++) { 

load a[i] ; Ai 

load b[i] ; Bi 

mult ab[i-1] ; *i-1 

add sum[i-2] ; +i-2 

} 

FINISH-UP-BLOCK

LOOP

START-UP    i=3 ... i=N FINISH-UP

-------- --- --- ---------

A1    A2    A3 Ai AN

B1    B2    B3 Bi BN

*1    *2 *i-1 *N-1 *N

+1 +i-2 +N-2 +N-1   +N



Global Scheduling

Loop unrolling and software pipelining work well for straightline code

What if code has branches?

Global scheduling techniques

Trace scheduling



Trace Scheduling

Compiler predicts most frequently executed execution path (trace)

Schedules this path and inserts repair code for mispredictions 



Trace Scheduling - Example

b[i] = ``old’’ 

a[i] = 

if (a[i] == 0) then 

b[i] = ``new’’; common case 

else 

X 

endif 

c[i] = 

Until done

Select most common path - a trace 

Schedule trace across basic blocks

Repair other paths

trace to be scheduled: repair code: 

b[i] = ``old'' A: restore old b[i] 

a[i] = X 

b[i] = ``new'' maybe recalculate c[i] 

c[i] = goto B 

if (a[i] != 0) goto A 

B:



Hardware Support to Expose Compile-Time ILP

Compiler scheduling limited by knowledge of branch behavior

Hardware support to help compiler

Predicated (or guarded or conditional) instructions 

Hardware support for compiler speculation



Predicated Instructions (Section H.4)

Used to convert control dependence to data dependence 

Instruction executed based on a predicate (or guard or condition) 

If condition is false, then no result write or exceptions



Predicated Instructions (Cont.) 

Example 

if (condition) then {

A = B; 

}

... 

Convert to: 

R1 result of condition evaluation 

A = B predicated on R1

... 

Hardware can schedule instructions across the branch 

Alpha, MIPS, PowerPC, SPARC V9, x86 (Pentium) have conditional moves 

IA-64 has general predication - 64 1-bit predicate bits

Limitations 

Takes a clock even if annulled 



Hardware Support for Compiler Speculation (Section H.5) 

Successful compiler scheduling requires

Preservation of exception behavior on speculation

Mechanism to speculatively reorder memory operations



Hardware for Preserving Exception Behavior 

What if there is an exception on a speculative instruction?

Distinguish between two classes of exceptions

(1) Indicate program error and require termination (e.g., 

protection violation)

(2) Can be handled and program resumed (e.g., page fault)

Type (2) can be handled immediately even for speculative 

instructions

Type (1) requires more support

Poison bits



Poison Bits 

Hardware support

A poison bit for each register

A speculation bit for each instruction 

If a speculative instruction sees an exception

it sets poison bit of destination

If a speculative instruction sees poison bit set for source

it propagates poison bit to its destination

If normal instruction sees poison bit for source, takes exception

Normal instruction resets poison bit of destination register



Hardware for Memory Speculation 

How to reorder memory ops if compiler is not sure of addresses?

Consider moving a load

Insert a special check instruction at original location of load

When load is executed, hardware saves its address

If there is a store to L’s address before the check instruction

Redo load

Branch to fix up code if other instructions already used load’s 

value


