
Chapter 3 – Instruction-Level Parallelism and

its Exploitation (Part 3)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)

Limitations of ILP

Multithreading (Section 3.11)

Putting it Together (Mini-projects)

Beyond Pipelining (Section 3.7)

Limits on Pipelining

Latch overheads & signal skew

Unpipelined instruction issue logic (Flynn limit: CPI 1)

Two techniques for parallelism in instruction issue

Superscalar or multiple issue

Hardware determines which of next n instructions can issue

in parallel

Maybe statically or dynamically scheduled

VLIW – Very Long Instruction Word

Compiler packs multiple independent operations into an

instruction

Simple 5-Stage Superscalar Pipeline

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

i+4 IF ID EX MEM WB

i+5 IF ID EX MEM WB

i+6 IF ID EX MEM WB

i+7 IF ID EX MEM WB

i+8 IF ID EX MEM WB

i+9 IF ID EX MEM WB

Superscalar, cont.

IF Parallel access to I-cache

Require alignment?

ID Replicate logic

Fixed-length instructions?

HANDLE INTRA-CYCLE HAZARDS

EX Parallel/pipelined (as before)

MEM > 1 per cycle?

If so, hazards & multi-ported D-cache

WB Different register files?

Multi-ported register files?

Progression: Integer + floating-point

Any two instructions

Any four instructions

Any n instructions?

Assume two instructions per cycle

One integer, load/store, or branch

One floating point

Could require 64-bit alignment and ordering of instruction pair.

I F I F F I

I F F I F I

OK NOT NOT

OK OK

Best case

CPI = 0.5

But

Example Superscalar

Superscalar (Cont.)

Hazards are a big problem

Loads

Latency is 1 cycle

Was 1 instruction

NOW 3 instructions

Branches

NOW 3 instructions

Floating point loads and stores

May cause structural hazards

Additional ports?

Additional stalls?

Parallelism required =

Superscalar (Cont.)**

Hazards are a big problem

Loads

Latency is 1 cycle

Was 1 instruction

NOW 3 instructions

Branches

NOW 3 instructions

Floating point loads and stores

May cause structural hazards

Additional ports?

Additional stalls?

Parallelism required = superscalar degree x operation latency

VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction

Like horizontal microcode

Versus Superscalar

Static Techniques for ILP - VLIW Processors

VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction

Like horizontal microcode

Versus Superscalar

+ Issue logic simpler

+ Potentially exploit more parallelism

VLIW Processors**

VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction

Like horizontal microcode

Versus Superscalar

+ Issue logic simpler

+ Potentially exploit more parallelism

- Code size explosion

- Complex compiler

- Binary compatibility difficult across generations

VLIW Processors**

VLIW = Very Long Instruction Word Processors

Static multiple issue

Compiler packs multiple independent operations into an instruction

Like horizontal microcode

Versus Superscalar

+ Issue logic simpler

+ Potentially exploit more parallelism

- Code size explosion

- Complex compiler

- Binary compatibility difficult across generations

Recent VLIWs overcome some problems (e.g., Intel/HP IA-64, TI C6)

VLIW Processors**

Limitations of Multi-Issue Machines

Inherent limitations of ILP

Difficulties in building hardware

Increase ports to registers

Increase ports to memory

Duplicate FUs

Decoding in superscalar and impact on clock rate

Limitations specific to VLIW

Code size, binary compatibility

Compiler Techniques to Expose ILP

Many compiler techniques exist

Several used for multiprocessors as well

Our focus on techniques specifically for ILP

Loop Unrolling (Section 3.2)

Add scalar to vector

Loop: L.D F0, 0(R1)

stall

ADD.D F4, F0, F2

stall

stall

S.D 0(R1), F4

DSUBUI R1, R1, #8

stall

BNEZ R1, Loop

stall

With scheduling

Loop: L.D F0, 0(R1)

DSUBUI R1, R1, #8

ADD.D F4, F0, F2

stall

BNEZ R1, Loop ; Assume delayed branch

S.D 8(R1), F4

Loop Unrolling

Unrolling the loop

Loop: L.D F0, 0(R1)

ADD.D F4, F0, F2

S.D 0(R1), F4

L.D F6, -8(R1)

ADD.D F8, F6, F2

S.D -8(R1), F8

L.D F10, -16(R1)

ADD.D F12, F10, F2

S.D -16(R1), F12

L.D F14, -24(R1)

ADD.D F16, F14, F2

S.D -24(R1), F16

DSUBUI R1, R1, #32

BNEZ R1, Loop; Assume delayed branch

Rename registers

Remove some branch overhead (calculate intermediate values)

Loop Unrolling

Scheduling the loop for simple pipeline

Loop: L.D F0, 0(R1)

L.D F6, -8(R1)

L.D F10, -16(R1)

L.D F14, -24(R1)

ADD.D F4, F0, F2

ADD.D F8, F6, F2

ADD.D F12, F10, F2

ADD.D F16, F14, F2

S.D 0(R1), F4

S.D -8(R1), F8

S.D -16(R1), F12

DSUBUI R1, R1, #32

BNEZ R1, Loop ; Assume delayed branch

S.D 8(R1), F16

How to schedule for multiple issue?

Software Pipelining (Section H.3)

Pipeline loops in software

Pipelined loop iteration

Executes instructions from multiple iterations of original loop

Separates dependent instructions

Less code than unrolling

Software Pipelining – Example

sum = 0.0;

for (i=1; i<=N; i++) { ; sum = sum + a[i]*b[i]

load a[i] ; Ai

load b[i] ; Bi

mult ab[i] ; *i

add sum[i] ; +i

}

sum = 0.0;

START-UP-BLOCK

for (i=3; i<=N; i++) {

load a[i] ; Ai

load b[i] ; Bi

mult ab[i-1] ; *i-1

add sum[i-2] ; +i-2

}

FINISH-UP-BLOCK

LOOP

START-UP i=3 ... i=N FINISH-UP

-------- --- --- ---------

A1 A2 A3 Ai AN

B1 B2 B3 Bi BN

*1 *2 *i-1 *N-1 *N

+1 +i-2 +N-2 +N-1 +N

Global Scheduling

Loop unrolling and software pipelining work well for straightline code

What if code has branches?

Global scheduling techniques

Trace scheduling

Trace Scheduling

Compiler predicts most frequently executed execution path (trace)

Schedules this path and inserts repair code for mispredictions

Trace Scheduling - Example

b[i] = ``old’’

a[i] =

if (a[i] == 0) then

b[i] = ``new’’; common case

else

X

endif

c[i] =

Until done

Select most common path - a trace

Schedule trace across basic blocks

Repair other paths

trace to be scheduled: repair code:

b[i] = ``old'' A: restore old b[i]

a[i] = X

b[i] = ``new'' maybe recalculate c[i]

c[i] = goto B

if (a[i] != 0) goto A

B:

Hardware Support to Expose Compile-Time ILP

Compiler scheduling limited by knowledge of branch behavior

Hardware support to help compiler

Predicated (or guarded or conditional) instructions

Hardware support for compiler speculation

Predicated Instructions (Section H.4)

Used to convert control dependence to data dependence

Instruction executed based on a predicate (or guard or condition)

If condition is false, then no result write or exceptions

Predicated Instructions (Cont.)

Example

if (condition) then {

A = B;

}

...

Convert to:

R1 result of condition evaluation

A = B predicated on R1

...

Hardware can schedule instructions across the branch

Alpha, MIPS, PowerPC, SPARC V9, x86 (Pentium) have conditional moves

IA-64 has general predication - 64 1-bit predicate bits

Limitations

Takes a clock even if annulled

Hardware Support for Compiler Speculation (Section H.5)

Successful compiler scheduling requires

Preservation of exception behavior on speculation

Mechanism to speculatively reorder memory operations

Hardware for Preserving Exception Behavior

What if there is an exception on a speculative instruction?

Distinguish between two classes of exceptions

(1) Indicate program error and require termination (e.g.,

protection violation)

(2) Can be handled and program resumed (e.g., page fault)

Type (2) can be handled immediately even for speculative

instructions

Type (1) requires more support

Poison bits

Poison Bits

Hardware support

A poison bit for each register

A speculation bit for each instruction

If a speculative instruction sees an exception

it sets poison bit of destination

If a speculative instruction sees poison bit set for source

it propagates poison bit to its destination

If normal instruction sees poison bit for source, takes exception

Normal instruction resets poison bit of destination register

Hardware for Memory Speculation

How to reorder memory ops if compiler is not sure of addresses?

Consider moving a load

Insert a special check instruction at original location of load

When load is executed, hardware saves its address

If there is a store to L’s address before the check instruction

Redo load

Branch to fix up code if other instructions already used load’s

value

