
Chapter 5: Thread-Level Parallelism – Part 1

Introduction

What is a parallel or multiprocessor system?

Why parallel architecture?

Performance potential

Flynn classification

Communication models

Architectures

Centralized shared-memory

Distributed shared-memory

Parallel programming

Synchronization

Memory consistency models

What is a parallel or multiprocessor system?

Multiple processor units working together to solve the same problem

Key architectural issue: Communication model

Why parallel architectures?

Absolute performance

Technology and architecture trends

Dennard scaling, ILP wall, Moore’s law

Multicore chips

Connect multicore together for even more parallelism

Amdahl's Law is pessimistic

Let s be the serial part

Let p be the part that can be parallelized n ways

Serial: SSPPPPPP

6 processors: SSP

P

P

P

P

P

Speedup = 8/3 = 2.67

T(n) =

As n → , T(n) →

Pessimistic

Performance Potential

1

s+p/n
1

s

Performance Potential (Cont.)

Gustafson's Corollary

Amdahl's law holds if run same problem size on larger machines

But in practice, we run larger problems and ''wait'' the same time

Performance Potential (Cont.)

Gustafson's Corollary (Cont.)

Assume for larger problem sizes

Serial time fixed (at s)

Parallel time proportional to problem size (truth more complicated)

Old Serial: SSPPPPPP

6 processors: SSPPPPPP

PPPPPP

PPPPPP

PPPPPP

PPPPPP

PPPPPP

Hypothetical Serial:

SSPPPPPP PPPPPP PPPPPP PPPPPP PPPPPP PPPPPP

Speedup = (8+5*6)/8 = 4.75

T'(n) = s + n*p; T'() → !!!!

How does your algorithm ''scale up''?

Flynn classification

Single-Instruction Single-Data (SISD)

Single-Instruction Multiple-Data (SIMD)

Multiple-Instruction Single-Data (MISD)

Multiple-Instruction Multiple-Data (MIMD)

Communication models

Shared-memory

Message passing

Data parallel

Communication Models: Shared-Memory

Each node a processor that runs a process

One shared memory

Accessible by any processor

The same address on two different processors refers to the

same datum

Therefore, write and read memory to

Store and recall data

Communicate, Synchronize (coordinate)

interconnect

P P P

MMMMMMM

Communication Models: Message Passing

Each node a computer

Processor – runs its own program (like SM)

Memory – local to that node, unrelated to other memory

Add messages for internode communication, send and receive like

mail

interconnect

P M P M P M

Communication Models: Data Parallel

Virtual processor per datum

Write sequential programs with ''conceptual PC'' and let parallelism

be within the data (e.g., matrices)

C = A + B

Typically SIMD architecture, but MIMD can be as effective

interconnect

P M P M P M

Architectures

All mechanisms can usually be synthesized by all hardware

Key: which communication model does hardware support best?

Virtually all small-scale systems, multicores are shared-memory

Which is Best Communication Model to Support?

Shared-memory

Used in small-scale systems

Easier to program for dynamic data structures

Lower overhead communication for small data

Implicit movement of data with caching

Hard to build?

Message-passing

Communication explicit harder to program?

Larger overheads in communication OS intervention?

Easier to build?

Shared-Memory Architecture

For now, assume interconnect is a bus – centralized architecture

The model

INTERCONNECT

PROC PROC PROC

MEMORY

Centralized Shared-Memory Architecture

PROC PROC PROC

MEMORY

BUS

Centralized Shared-Memory Architecture (Cont.)

For higher bandwidth (throughput)

For lower latency

Problem?

Cache Coherence Problem

BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORY
A

A

BUS

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORY
A

A

Cache Coherence Solutions

Snooping

Problem with centralized architecture

Distributed Shared-Memory (DSM) Architecture

Use a higher bandwidth interconnection network

Uniform memory access architecture (UMA)

PROC 2PROC 1 PROC n

CACHE

MEMORY MEMORY

CACHE CACHE

MEMORY

GENERAL INTERCONNECT

Distributed Shared-Memory (DSM) - Cont.

For lower latency: Non-Uniform Memory Access architecture (NUMA)

Non-Bus Interconnection Networks

Example interconnection networks

Distributed Shared-Memory - Coherence Problem

Directory scheme

Level of indirection!

SWITCH/NETWORK

PROC

MEM

CACHE

PROC

MEM

CACHE

PROC

MEM

CACHE

Parallel Programming Example

Add two matrices: C = A + B

Sequential Program

main(argc, argv)

int argc; char *argv;

{

Read(A);

Read(B);

for (i = 0; i ! N; i++)

for (j = 0; j ! N; j++)

C[i,j] = A[i,j] + B[i,j];

Print(C);

}

Parallel Program Example (Cont.)

The Parallel Programming Process

Synchronization

Communication – Exchange data

Synchronization – Exchange data to order events

Mutual exclusion or atomicity

Event ordering or Producer/consumer

Point to Point

Flags

Global

Barriers

Mutual Exclusion

Example

Each processor needs to occasionally update a counter

Processor 1 Processor 2

Load reg1, Counter Load reg2, Counter

reg1 = reg1 + tmp1 reg2 = reg2 + tmp2

Store Counter, reg1 Store Counter, reg2

Mutual Exclusion Primitives

Hardware instructions

Test&Set

Atomically tests for 0 and sets to 1

Unset is simply a store of 0

while (Test&Set(L) != 0) {;}

Critical Section

Unset(L)

Problem?

Mutual Exclusion Primitives – Alternative?

Test&Test&Set

Mutual Exclusion Primitives – Fetch&Add

Fetch&Add(var, data)

{ /* atomic action */

temp = var

var = temp + data

}

return temp

E.g., let X = 57

P1: a = Fetch&Add(X,3)

P2: b = Fetch&Add(X,5)

If P1 before P2, ?

If P2 before P1, ?

If P1, P2 concurrent ?

Point to Point Event Ordering

Example

Producer wants to indicate to consumer that data is ready

Processor 1 Processor 2

A[1] = … … = A[1]

A[2] = … … = A[2]

. .

. .

A[n] = … … = A[n]

Global Event Ordering – Barriers

Example

All processors produce some data

Want to tell all processors that it is ready

In next phase, all processors consume data produced previously

Use barriers

