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Chapter 5: Multiprocessors (Thread-Level Parallelism)– Part 2

Introduction

What is a parallel or multiprocessor system? 

Why parallel architecture? 

Performance potential 

Flynn classification 

Communication models

Architectures 

Centralized sharedmemory

Distributed sharedmemory 

Parallel programming

Synchronization 

Memory consistency models

Memory Consistency Model - Motivation

Example shared-memory program

Initially all locations = 0

Processor 1 Processor 2

Data = 23 while (Flag != 1) {;}

Flag = 1 … = Data

Execution (only shared-memory operations)

Processor 1 Processor 2

Write, Data, 23

Write, Flag, 1

Read, Flag, 1

Read, Data, ___

Memory Consistency Model: Definition

Memory consistency model 

Order in which memory operations will appear to execute 

 What value can a read return?

Affects ease-of-programming and performance 

The Uniprocessor Model

Program text defines total order = program order

Uniprocessor model

Memory operations appear to execute one-at-a-time in program 

order

 Read returns value of last write

BUT uniprocessor hardware

Overlap, reorder operations

Model maintained as long as

maintain control and data dependences

 Easy to use + high performance
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Implicit Memory Model

Sequential consistency (SC) [Lamport]

Result of an execution appears as if 

• All operations executed in some sequential order (i.e., atomically)

• Memory operations of each process in program order

MEMORY

P1 P3P2 Pn

Understanding Program Order – Example 1

Initially Flag1 = Flag2 = 0 

P1 P2 

Flag1 = 1 Flag2 = 1 

if (Flag2 == 0) if (Flag1 == 0) 

critical section critical section 

Execution:

P1 P2
(Operation, Location, Value) (Operation, Location, Value)

Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1, ___

Understanding Program Order – Example 1

P1 P2
Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1,    0

Can happen if

• Write buffers with read bypassing

• Overlap, reorder write followed by read in h/w or compiler

• Allocate Flag1 or Flag2 in registers

Understanding Program Order - Example 2

Initially A = Flag = 0

P1 P2 

A = 23; while (Flag != 1) {;} 

Flag = 1; ... = A; 

P1 P2 

Write, A, 23 Read, Flag, 0 

Write, Flag, 1 

Read, Flag, 1 

Read, A, ____
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Understanding Program Order - Example 2

Initially A = Flag = 0

P1 P2 

A = 23; while (Flag != 1) {;} 

Flag = 1; ... = A; 

P1 P2 

Write, A, 23 Read, Flag, 0 

Write, Flag, 1 

Read, Flag, 1 

Read, A,   0

Can happen if

Overlap or reorder writes or reads in hardware or compiler

Understanding Program Order: Summary

SC limits program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

Understanding Atomicity

A mechanism needed to propagate a write to other copies 

 Cache coherence protocol 

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS

Cache Coherence Protocols

How to propagate write? 

Invalidate -- Remove old copies from other caches 

Update -- Update old copies in other caches to new values 
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Understanding Atomicity - Example 1

Initially A = B = C = 0 

P1 P2 P3                              P4

A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 

B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;                   tmp2 = A;    

Understanding Atomicity - Example 1

Initially A = B = C = 0 

P1 P2 P3                              P4

A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 

B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;     1 tmp2 = A;    2

Can happen if updates of A reach P3 and P4 in different order

Coherence protocol must serialize writes to same location

(Writes to same location should be seen in same order by all)

Understanding Atomicity - Example 2

Initially A = B = 0 

P1 P2 P3 

A = 1 while (A != 1) ;while (B != 1) ; 

B = 1; tmp = A 

P1 P2 P3 

Write, A, 1 

Read, A, 1 

Write, B, 1 

Read, B, 1 

Read, A,   0

Can happen if read returns new value before all copies see it

SC Summary

SC limits

Program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

When a processor can read the value of a write

Unserialized writes to the same location

Alternative

(1) Aggressive hardware techniques proposed to get SC w/o penalty

using speculation and prefetching

But compilers still limited by SC

(2) Give up sequential consistency

Use relaxed models
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Classification for Relaxed Models

Typically described as system optimizations - system-centric

Optimizations

Program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

Read others’ write early

Read own write early

All models provide safety net

All models maintain uniprocessor data and control dependences, 

write serialization 

Some System-Centric Models

SYNC✓✓✓✓✓PowerPC

various MEMBARs✓✓✓✓RMO

MB, WMB✓✓✓✓Alpha

release, acquire, 

nsync, RMW
✓✓✓✓✓RCpc

release, acquire, 

nsync, RMW
✓✓✓✓RCsc

synchronization✓✓✓✓WO

RMW, STBAR✓✓✓PSO

RMW✓✓✓PC

RMW✓✓TSO

serialization 

instructions
✓IBM 370

Safety NetRead Own 
Write Early

Read Others’ 
Write Early

R →RW 

Order

W →W 

Order

W →R 

Order

Relaxation:

System-Centric Models: Assessment

System-centric models provide higher performance than SC

BUT  3P criteria

Programmability?

Lost intuitive interface of SC

Portability?

Many different models

Performance?

Can we do better?

Need a higher level of abstraction  

An Alternate Programmer-Centric View

One source of consensus

Programmers need SC to reason about programs

But SC not practical today

How about the next best thing…
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A Programmer-Centric View

Specify memory model as a contract

System gives sequential consistency

IF programmer obeys certain rules

+ Programmability

+ Performance

+ Portability

The Data-Race-Free-0 Model: Motivation 

Different operations have different semantics

P1 P2 

A =  23; while (Flag != 1)  {;}

B =  37;                                     … = B;

Flag = 1;                                   … = A; 

Flag = Synchronization; A, B = Data 

Can reorder data operations 

Distinguish data and synchronization 

Need to

- Characterize data / synchronization

- Prove characterization allows optimizations w/o violating SC

Data-Race-Free-0: Some Definitions

Two operations  conflict if

– Access same location

– At least one is a write

Data-Race-Free-0: Some Definitions (Cont.)

(Consider SC executions  global total order)

Two conflicting operations race if

– From different processors

– Execute one after another (consecutively)

P1 P2 

Write, A, 23 

Write, B, 37

Read, Flag, 0

Write, Flag, 1

Read, Flag, 1

Read, B, ___

Read, A, ___

Races usually  “synchronization,” others  “data”

Can optimize operations that never race
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Data-Race-Free-0 (DRF0) Definition

Data-Race-Free-0 Program

All accesses distinguished as either synchronization or data

All races distinguished as synchronization

(in any SC execution)

Data-Race-Free-0 Model

Guarantees SC to data-race-free-0 programs

It is widely accepted that data races make programs hard to debug 

independent of memory model (even with SC)

Distinguishing/Labeling Memory Operations

Need to distinguish/label operations at all levels

• High-level language 

• Hardware 

Compiler must translate language label to hardware label

Java: volatiles, synchronized

C++: atomics

Hardware: fences inserted before/after synchronization

Data-Race-Free Summary

The idea

Programmer writes data-race-free programs

System gives SC

For programmer

Reason with SC

Enhanced portability

For hardware and compiler

More flexibility

Finally, convergence on hardware and software sides

(BUT still many problems…)
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