
Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 1

Chapter 5: Multiprocessors (Thread-Level Parallelism)– Part 2

Introduction

What is a parallel or multiprocessor system? 

Why parallel architecture? 

Performance potential 

Flynn classification 

Communication models

Architectures 

Centralized sharedmemory

Distributed sharedmemory 

Parallel programming

Synchronization 

Memory consistency models

Memory Consistency Model - Motivation

Example shared-memory program

Initially all locations = 0

Processor 1 Processor 2

Data = 23 while (Flag != 1) {;}

Flag = 1 … = Data

Execution (only shared-memory operations)

Processor 1 Processor 2

Write, Data, 23

Write, Flag, 1

Read, Flag, 1

Read, Data, ___

Memory Consistency Model: Definition

Memory consistency model 

Order in which memory operations will appear to execute 

 What value can a read return?

Affects ease-of-programming and performance 

The Uniprocessor Model

Program text defines total order = program order

Uniprocessor model

Memory operations appear to execute one-at-a-time in program 

order

 Read returns value of last write

BUT uniprocessor hardware

Overlap, reorder operations

Model maintained as long as

maintain control and data dependences

 Easy to use + high performance

1 2

3 4



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 2

Implicit Memory Model

Sequential consistency (SC) [Lamport]

Result of an execution appears as if 

• All operations executed in some sequential order (i.e., atomically)

• Memory operations of each process in program order

MEMORY

P1 P3P2 Pn

Understanding Program Order – Example 1

Initially Flag1 = Flag2 = 0 

P1 P2 

Flag1 = 1 Flag2 = 1 

if (Flag2 == 0) if (Flag1 == 0) 

critical section critical section 

Execution:

P1 P2
(Operation, Location, Value) (Operation, Location, Value)

Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1, ___

Understanding Program Order – Example 1

P1 P2
Write, Flag1, 1 Write, Flag2, 1 

Read, Flag2, 0 Read, Flag1,    0

Can happen if

• Write buffers with read bypassing

• Overlap, reorder write followed by read in h/w or compiler

• Allocate Flag1 or Flag2 in registers

Understanding Program Order - Example 2

Initially A = Flag = 0

P1 P2 

A = 23; while (Flag != 1) {;} 

Flag = 1; ... = A; 

P1 P2 

Write, A, 23 Read, Flag, 0 

Write, Flag, 1 

Read, Flag, 1 

Read, A, ____

5 6

7 8



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 3

Understanding Program Order - Example 2

Initially A = Flag = 0

P1 P2 

A = 23; while (Flag != 1) {;} 

Flag = 1; ... = A; 

P1 P2 

Write, A, 23 Read, Flag, 0 

Write, Flag, 1 

Read, Flag, 1 

Read, A,   0

Can happen if

Overlap or reorder writes or reads in hardware or compiler

Understanding Program Order: Summary

SC limits program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

Understanding Atomicity

A mechanism needed to propagate a write to other copies 

 Cache coherence protocol 

P1

CACHE

MEMORY MEMORY

A OLD

P2 Pn

A OLD

A OLD

BUS

Cache Coherence Protocols

How to propagate write? 

Invalidate -- Remove old copies from other caches 

Update -- Update old copies in other caches to new values 

9 10

11 12



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 4

Understanding Atomicity - Example 1

Initially A = B = C = 0 

P1 P2 P3                              P4

A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 

B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;                   tmp2 = A;    

Understanding Atomicity - Example 1

Initially A = B = C = 0 

P1 P2 P3                              P4

A = 1; A = 2;            while (B != 1) {;} while (B != 1) {;} 

B = 1; C = 1;            while (C != 1) {;}         while (C != 1) {;}

tmp1 = A;     1 tmp2 = A;    2

Can happen if updates of A reach P3 and P4 in different order

Coherence protocol must serialize writes to same location

(Writes to same location should be seen in same order by all)

Understanding Atomicity - Example 2

Initially A = B = 0 

P1 P2 P3 

A = 1 while (A != 1) ;while (B != 1) ; 

B = 1; tmp = A 

P1 P2 P3 

Write, A, 1 

Read, A, 1 

Write, B, 1 

Read, B, 1 

Read, A,   0

Can happen if read returns new value before all copies see it

SC Summary

SC limits

Program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

When a processor can read the value of a write

Unserialized writes to the same location

Alternative

(1) Aggressive hardware techniques proposed to get SC w/o penalty

using speculation and prefetching

But compilers still limited by SC

(2) Give up sequential consistency

Use relaxed models

13 14

15 16



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 5

Classification for Relaxed Models

Typically described as system optimizations - system-centric

Optimizations

Program order relaxation:

Write → Read

Write →Write 

Read → Read, Write

Read others’ write early

Read own write early

All models provide safety net

All models maintain uniprocessor data and control dependences, 

write serialization 

Some System-Centric Models

SYNC✓✓✓✓✓PowerPC

various MEMBARs✓✓✓✓RMO

MB, WMB✓✓✓✓Alpha

release, acquire, 

nsync, RMW
✓✓✓✓✓RCpc

release, acquire, 

nsync, RMW
✓✓✓✓RCsc

synchronization✓✓✓✓WO

RMW, STBAR✓✓✓PSO

RMW✓✓✓PC

RMW✓✓TSO

serialization 

instructions
✓IBM 370

Safety NetRead Own 
Write Early

Read Others’ 
Write Early

R →RW 

Order

W →W 

Order

W →R 

Order

Relaxation:

System-Centric Models: Assessment

System-centric models provide higher performance than SC

BUT  3P criteria

Programmability?

Lost intuitive interface of SC

Portability?

Many different models

Performance?

Can we do better?

Need a higher level of abstraction  

An Alternate Programmer-Centric View

One source of consensus

Programmers need SC to reason about programs

But SC not practical today

How about the next best thing…

17 18

19 20



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 6

A Programmer-Centric View

Specify memory model as a contract

System gives sequential consistency

IF programmer obeys certain rules

+ Programmability

+ Performance

+ Portability

The Data-Race-Free-0 Model: Motivation 

Different operations have different semantics

P1 P2 

A =  23; while (Flag != 1)  {;}

B =  37;                                     … = B;

Flag = 1;                                   … = A; 

Flag = Synchronization; A, B = Data 

Can reorder data operations 

Distinguish data and synchronization 

Need to

- Characterize data / synchronization

- Prove characterization allows optimizations w/o violating SC

Data-Race-Free-0: Some Definitions

Two operations  conflict if

– Access same location

– At least one is a write

Data-Race-Free-0: Some Definitions (Cont.)

(Consider SC executions  global total order)

Two conflicting operations race if

– From different processors

– Execute one after another (consecutively)

P1 P2 

Write, A, 23 

Write, B, 37

Read, Flag, 0

Write, Flag, 1

Read, Flag, 1

Read, B, ___

Read, A, ___

Races usually  “synchronization,” others  “data”

Can optimize operations that never race

21 22

23 24



Lecture notes for CS 433 - Chapter 4 11/21/2019

Sarita Adve 7

Data-Race-Free-0 (DRF0) Definition

Data-Race-Free-0 Program

All accesses distinguished as either synchronization or data

All races distinguished as synchronization

(in any SC execution)

Data-Race-Free-0 Model

Guarantees SC to data-race-free-0 programs

It is widely accepted that data races make programs hard to debug 

independent of memory model (even with SC)

Distinguishing/Labeling Memory Operations

Need to distinguish/label operations at all levels

• High-level language 

• Hardware 

Compiler must translate language label to hardware label

Java: volatiles, synchronized

C++: atomics

Hardware: fences inserted before/after synchronization

Data-Race-Free Summary

The idea

Programmer writes data-race-free programs

System gives SC

For programmer

Reason with SC

Enhanced portability

For hardware and compiler

More flexibility

Finally, convergence on hardware and software sides

(BUT still many problems…)

25 26

27


