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Abstract

This machine problem introduces you to socket programming in C and the mecha-
nism for submitting assignments. We use virtual machines to simulate multiple network
entities. This assignment will help you prepare your environment so that all subse-
quent assignments will be simpler to code and submit. Since this assignment has all
the preparatory material, the TAs will not help you understand this part in subsequent
machine problems.

1 Introduction

The purpose of this machine problem is to familiarize you with network programming in
the environment to be used in the class and to acquaint you with the procedure for hand-
ing in machine problems. The problem is intended as an introductory exercise to test your
background in C programming. You will obtain, compile, run, and extend a simple network
program. The extensions to the code will introduce you to one method of framing data
into individual messages when using a byte stream abstraction such as TCP for communi-
cation.

2 What Is Expected in this MP?

Inside the release folder, You will find a folder named mp0, which contains the programs
client.c, server.c, talker.c, and listener.c — all from Beejs Guide to Network Program-
ming:

(http://beej.us/guide/bgnet/).

Beej’s guide is an excellent introduction to socket programming, and very approachable. Compile
the files using gcc to create the executable files client, server, talker, and listener . We
provide a Makefile that will compile all 4 (simply run make inside the directory). The real assign-
ments will require you to submit a Makefile, so if you aren’t already experienced with make, please
familiarize yourself with the provided Makefile, and ensure that you can adapt it to a new project.
Login to two different machines (Virtual Machines), and execute client on one and server on the
other. This makes a TCP connection. Next, execute talker on one machine and listener on the
other. This sends a UDP packet.

Note that the connection oriented pair, server and client, use a different port than the datagram
oriented pair, listener and talker. Try using the same port for each pair, and run the pairs
simultaneously. Do the pairs of programs interfere with each other?



Next, change server.c to accept a file name as a command line argument and to deliver the length
and contents of the file to each client. Assume that the file contains no more than 100 bytes of data.
Send the length of the file (an integer between 0 and 100) as an 8-bit integer. Change client.c
to read first the length, then that number of bytes from the TCP socket, and then print what was
received.

The client output should look like this:

client: connecting to <hostname>
client: received <filelen> bytes
This is a sample file that is sent over a TCP connection.

where <hostname> is the address of the server, <filelen> is the number of bytes received, and the
rest of the output is the file contents. Thats it. Sounds simple, doesnt it? Indeed, for experienced
Unix/C programmers this MP is trivial. Others should find it a nice way to get started on network
programming.

You will need to have (or quickly acquire) a good knowledge of the ANSI C programming language,
including the use of pointers, structures, typedef, and header files. If you have taken CS241 you
should already have the necessary background. Dont simply download the source code and compile
the programs, but make sure that you read and understand how the sockets are created and the
connection established. Beejs guide is a very useful tool in this sense.

3 How to Set Up VirtualBox VM Environment?

The autograder runs your code in VMs—64-bit Ubuntu 16.04.3 LTS VMs (desktop version), running
on VirtualBox. Therefore, to test your code, you will need a 64-bit Ubuntu 16.04.3 LTS VM of
your own. (Even if you're already running Ubuntu 16.04.3 LTS on your personal machine, later
assignments will use multiple VMs, so you might as well start using the VM now.)

WARNING: COMPILATION CAN BE A LOT LESS PORTABLE THAN YOU THINK, ES-
PECTALLY WHEN OSX OR EWS IS INVOLVED. Please don’t assume that it will be ok after
testing it only on your personal machine or EWS. (Just don’t use EWS at all; it is not well suited
to classes that involve networked programming assignments.)

A tutorial for installing Ubuntu on VirtualBox can be found at
http://www.psychocats.net/ubuntu/virtualbox.

This tutorial is for Windows, but VirtualBox works and looks the same on all OSes. The Ubuntu
16.04.3 image:

http://www.ubuntu.com/download/alternative-downloads

After the Ubuntu install process (within the VM), you should install the ssh server. You can do
sudo apty-get install opensshy-server once the OS is installed. Use apt-get (sudo apt-get
install xyz) to install any programs you’'ll need, like gcc, make, gdb, valgrind. I would sug-
gest also getting iperf and tcpdump, which will be useful later.



4 How to Set Up Networking Inside VMs?

VirtualBox’s default network setup is a NAT (which we’ll learn about later!) interface to the outside
world, provided by the host computer. This allows the VM to access the Internet, but the host
computer and other VMs will not be able to talk to it. We're going to replace the NAT interface
with one that allows those communications.

However, BEFORE YOU MAKE THIS CHANGE, you should use that Internet access to: sudo
apt-nget install gcc g++ make gdb iperf tcpdump wget

Now it’s time to replace the network interface. Make sure the VM is fully shut down, and go to
its Settings — Network section. Switch the Adapter Type from NAT to "host-only", and click
ok. Restart, and the VM will now be able to talk to other host-only VMs on the same com-
puter, as well as the host computer (for ssh). Finally, sshfs is an excellent way to access the
VM’s filesystem (or any other remote filesystem). On your host system, sshfs 192.168.56.101:
directory-to-mount-in will mount the VM’s filesystem as if it were a USB flash drive. (Replacing
the IP address with whatever it actually is, of course). sshfs may not be available on all operating
systems.

5 What Tips and Tricks Will be Useful?

Copy-pasting directly from pdf files is a bad idea. Dashes, quotes, and kerned characters may get
completely mis-represented when pasted in a terminal.

Never add compiled executables and object files to the git. You might lose points in subsequent
assignments if you add executables or object files to git. Use git add to add only the source files
(src folder), Makefile, version.txt, and teamname.txt files.

MPO is ungraded, but still very important to get you started. Performing this assignment success-
fully will make submitting the subsequent assignments much easier.

6 Git Instructions

6.1 Course Setup (only once for the entire semester)
The first time youre accessing the ECE438 repository this semester, you will need to have a ECE438
repository set up for you. This process is simple:

1. Visit https://edu.cs.illinois.edu/create-ghe-repo/ece438-£fa20/

2. The web service will generate your ECE 438 repository and provide you with your repository
name. Its usually https://github-dev.cs.illinois.edu/ece438-fa20/yourNetID.

6.2 Workspace Setup (necessary only once per computer/directory)
Cloning your repository:

To setup your computer to work on an MP or a lab, you will need to clone your repository onto your
comptuer. The URL of your repository will be based on your NetID and you will need to replace
NETID with your NetID. To clone your repository, run git clone inside your desired directory:



git clone https://github-dev.cs.illinois.edu/ece438-fa20/yourNetID.git folderName

you can replace folderName with whatever folder you want created (for example ece438). You can
submit this MP and all subsequent ones through this repository.

Username and password entry:

Your username is your NetID. On some systems, git (and other command line programs) will not
display anything when you type your password. This is expected: type in your password as normal,
and then hit Enter [ ).

Finally, move into the directory you just cloned:
cd folderName
Released code:

The code we release as a starting point for any MP will be present in the release repository. You
need to add this repository as a remote:

git remote add release https://github-dev.cs.illinois.edu/ece438-fa20/_release.git

Youre now all set to begin to work on your assignment!

6.3 Assignment Setup (necessary only once per assignment)

To retrieve the latest assignments for ECE 438, you need to fetch and merge the release repository
into your repository. This can be done with the following commands:

git pull
git fetch release

git merge release/master -m "Merging release repository"

6.4 Assignment Submission (do this often!)

The first step in assignment submission is to increment the version number in your version.txt file.
Your code will not be picked up by the autograder if you fail to increment the version number.

Every time you want to submit your work, you will need to add, commit, and push your work to
your git repository. This can always be done using the following commands on a command line
while within your ECE 438 directory:

git add -u
git commit -m "your commit message"
git push origin master

You can also check the working tree status of your repository by running git status after each
step to make sure everything has been added, commited and pushed. Be sure not to skip origin
master when trying to push/pull.



6.5 Verifying Submission

You can always verify your submission by visiting https://github-dev.cs.illinois.edu/ and
viewing the files in your repository. Only the files that appear on your github-dev repository will
be graded.

6.6 How to See Your Grade?

The autograder runs periodically on all new submissions (again, don’t forget to update the version
number!). The results are updated in a different branch (__grades) inside your directory.

For your convenience, we have created a script to see the results: ./see_results.sh

The script swaps the branch to _ grades, shows the results, and swaps the branch back. If you
run the see_ results.sh file on mp0 before the autograder has run, your directory will move to the
_ grades branch. You will have to manually execute git checkout master to get back to your
working branch. DO NOT work on the _ grades branch!

Tests generally take 1-4 minutes, and there may be a queue of students. You can see where you
are in the queue at

http://cs438fa20.csl.illinois.edu:8080/queue/queue.html. This is a UIUC-private IP. If
your device is not accessing it through campus network, please use Illinois VPN to get a private
1P.

Caution: During the hours leading up to the submission deadline the queues could be multiple
hours long. So it is advisable to get your work done early.



