
ECE/CS 438: Communication Networks Fall 2020

Machine Problem 3

Handed Out: Nov 08, 2020 Due: 11 : 59pm,Nov 18, 2020

TA: Yu-Lin Wei

Abstract

This machine problem tests your understanding of the distance vector and the link
state routing algorithms.

1 Introduction

In this MP, you will implement the link state and distance vector routing protocols. You will
write two separate programs: one that implements the link state protocol, and one that
implements the distance vector protocol. Both programs will read the same file formats to
get the network’s topology and what messages to send.

2 Router Programs

Your program should contain a collection of imaginary routing nodes that carry out their
routing protocol (link state or distance vector, for the corresponding program). These
imaginary nodes are just data-structures in your program. There is no socket programming
involved. Once their tables have converged, for each node (in ascending order of node
ID), write out the node’s forwarding table (see Output format section for details). Then,
have some of your nodes send some data to some other nodes, with the data forwarded
according to the nodes’ forwarding tables. The sources, destinations, and message contents
are specified in the message file; see below for format. Then, one at a time, apply each
line in the topology changes file (see below) in order, and repeat the previous instructions
after each change. The nodes in your distance vector, link state program should use the
DV, LS algorithm to arrive at a correct forwarding table for the network they’re in.

3 Tie breaking

We would like everyone to have consistent output even on complex topologies, so we ask
you to follow specific tie-breaking rules.

1. Distance Vector Routing: when two equally good paths are available, your node
should choose the one whose next-hop node ID is lower.

2. Link State: When choosing which node to move to the finished set next, if there is a
tie, choose the lowest node ID.

1



3. If a current-best-known path and newly found path are equal in cost, choose the path
whose last node before the destination has the smaller ID.
Example: source is 1, and the current-best-known path to 9 is 1 → 4 → 12 → 9. We
are currently adding node 10 to the finished set. 1 → 2 → 66 → 4 → 5 → 10 → 9
costs the same as path 1 → 4 → 12 → 9. We will switch to the new path, since
10<12.

4 Input Formats

The program reads three files: the topology file, the topology changes file, and the message
file.

Your programs will be run using the following commands:

./linkstate topofile messagefile changesfile

./distvec topofile messagefile changesfile

All files have their items delimited by newlines. The topology file represents the initial topology.
The topology changes file represents a sequence of changes to the topology, to be applied one by
one. The message file describes which nodes should send data to whom once the routing tables
converge. (The tables should converge before the topology changes start, as well as after each
change). All messages in the message file are sent every time the tables converge. So, if there
are two message lines in the messagefile, and two changes in the changesfile, a total of (2(initial)
+ 2(after first change in changesfile has been applied) + 2(second line in changesfile has been
applied)) = 6 messages are to be sent.

A line in the topology file represents a link between two nodes, and looks like: <ID of a node>
<ID of another node> <cost of the link between them> The topology changes file has the
exact same format. The first line in the changes file is the first change to apply, second is the
second, etc. Cost -999 (and only -999) indicates that the previously existing link between the two
nodes is broken. (Real link costs are always positive; never zero or negative.)

A line in the message file looks like: <source node ID> <dest node ID> <message text> The
files we test your code with will follow this description exactly, with nothing extraneous or improp-
erly formatted.

Example topology file:

1 2 8
2 3 3
2 5 4
4 1 1
4 5 1

This would correspond to a topology of Figure 1.

Example message file: 2 1 here is a message from 2 to 1

3 5 this one gets sent from 3 to 5!

2



Figure 1: Sample Topology

The message file would cause "here is a message from 2 to 1" to be sent from 2->1, and "this one
gets sent from 3 to 5!" from 3->5. Note that node IDs could go to double digits.

Example changes file:
2 4 1
2 4 -999

This would add a cost 1 link between 2 and 4, and then remove it afterwards.

5 Output Format
Write all output described in this section to a file called “output.txt”.

The forwarding table format should be: destination nexthop pathcost where nexthop is the neigh-
bor we hand destination’s packets to, and pathcost is the total cost of this path to destination. The
table should be sorted by destination. Example for node 2 from the example topology:

1 5 6
2 2 0
3 3 3
4 5 5
5 5 4

As you can see, the node’s entry for itself should list the nexthop as itself, and the cost as 0. If a
destination is not reachable, do not print its entry. That’s one single space in between each number,
with each row on its own line. Remember, you’re printing all nodes’ tables at once. So, the example
for node 2 would have been preceded by a similarly formatted table for node 1, and followed by
the tables of 3, 4, and 5.

When a message is to be sent, print the source, destination, path cost, path taken (including the
source, but NOT the destination node), and message contents in the following format:
“from <x> to <y> cost <path_cost> hops <hop1> <hop2> <...> message <message>”
e.g. : “from 2 to 1 cost 6 hops 2 5 4 message here is a message from 2 to 1”
Print messages in the order they were specified in the messages file. If the destination is not reach-
able, please say “from <x> to <y> cost infinite hops unreachable message <message>”

Please do not print anything else; any diagnostic messages or the like should be commented out

3



before submission. However, if you want to organize the output a little, it’s okay to print as many
blank lines as you want in between lines of output.

Both messagefile and changesfile can be empty. In this case, the program should just print the
forwarding table.

The output file will have the general layout as follows:
<topology entries for node 1>
<topology entries for node 2>
<topology entries for node 3>
<topology entries for node ...>
<message output line 1>
<message output line 2>
<message output line ...>
——– At this point, 1st change is applied
<topology entries for node 1>
<topology entries for node 2>
<topology entries for node 3>
<topology entries for node ...>
<message output line 1>
<message output line 2>
<message output line ...>
——– At this point, 2nd change is applied
<topology entries for node 1>
<topology entries for node 2>
<topology entries for node 3>
<topology entries for node ...>
<message output line 1>
<message output line 2>
<message output line ...>
——– And so on...

6 Notes
All the notes for the previous MPs still apply. We are not repeating those here for brevity.

New information:

1. Your project must include a Makefile whose default target makes executables called distvec
and linkstate.

2. Command line format:
“./distvec topofile messagefile changesfile”,
“./linkstate topofile messagefile changesfile”.

Submission instructions are same as for mp1/2. Tests generally take 10-15 minutes, and there
may be a queue of students. You can see where you are in the queue at
http://cs438fa20.csl.illinois.edu:8080/queue/queue_mp3.html.

4



Do refer to MP0, MP1, and MP2 instructions for other notes.

5


	Introduction
	Router Programs
	Tie breaking
	Input Formats
	Output Format
	Notes

