Computer Networks ECE/CS 438 Fall 2020

Romit Roy Choudhury Dept. of ECE and CS

Course Logistics

■ Timing: Tu/Th 3:30 - 4:50pm, UIUC time

■ Mode: Online (Zoom)

Course URL: https://courses.grainger.illinois.edu/cs438/fa2020/

Instructor: Romit Roy Choudhury

Faculty ECE and CS

PhD from UIUC, 2006

Research: Wireless/Mobile Networking, Sensing

Webpage: croy.web.engr.illinois.edu

■ Office Hours: Tu/Th after class

Or email <u>croy@illinois.edu</u> for 1:1

■ Teaching Assistants (TAs) ... see URL for email IDs

Wally

Zhijian

Mingjia (ZJUI TA)

- Prerequisite: Probability
 - Programming

Further courses:

- Advanced Computer Networks
- Advanced Wireless Networking
- Hot Topics in Mobile Computing
- Advanced Distributed Systems
- IoT, Big Data, and CyberPhysical Systems
- ...

■ Information Dissemination:

URL: https://courses.grainger.illinois.edu/cs438/fa2020/
Most course related information will be posted on the website When in doubt, check the webpage.

Some reminder/clarification emails may be sent out

Piazza:

- Just search for "ECE CS 438" on Piazza.
- Piazza meant entirely for students to communicate.
- Faculty and TAs may respond occasionally.

■ Grading:

```
Homework (3 or 4): 15%
Programming Assignments (3 or 4): 25%
1 mid-term exam: 25%
Final exam: 35%
```

- Programming assignments may be in groups of 2.
 Each group makes single submission.
- 4 credit students need to complete a mini-project and submit a report at the end of semester (more later)

Finally

Academic honesty

- 1. I believe you won't cheat. If you are anxious, or in great pressure ... talk to me. I understand, and some accomodations can be made. But don't take the "wrong pill".
- 2. In the long run, GPA does not matter as much as you think it does. Tarnishing a long-term career not worth the 0.05 net GPA points.
- 3. I am lenient and easy-going until someone is proven to be cheating.

Course Summary (Very Briefly)

Course information

□ Course materials:

❖ Text:

Computer Networking: A Top Down Approach J. Kurose & K. Ross, Addison Wesley

- Class notes/slides
 - Acknowledgment to Jim Kurose
- ❖ Some supplementary reading material

What is this course about?

- Introductory (first) course in computer networking
 - Undergrads, early grad students
- □ learn principles of computer networking
- □ learn practice of computer networking
- □ Internet architecture/protocols as case study
- Real wireless networks as case studies
- Glimpses into the future of networking

Course information

□ By the time you are finished ... ☐ You understand variety of factoids and concepts □ Propagation delay, transmit time, queueing, ... Internet layered architecture, HTTP, DNS, P2P, ... □ Sockets, Ports, ... □ Congestion Control, Flow Control, TCP, ... □ Routing, Basic Graphs, Djikstra's Algorithm, IP, BGP, OSPF, ... □ DSL Vs Cable, Aloha, CSMA, TDMA, Token, ... □ Cellular Network architecture, handoff, roaming, Mobile IP, ... ☐ Wireless Networks (WiFi) □ Security, RSA, Digital certificates, MIM attacks, ... **...**

If you understand 75% of these terms, you shouldn't be here

What this Course Does Not Cover

■ Does not cover

- Device drivers, SDNs, cloud computing ...
- Network theory, graph theory, proofs
- Radio hardware, embedded systems, IoT, scheduling
- Modulation schemes, transmitter/receiver design
- Not a "communications" course

■ This is course on

 Understanding, analyzing, and (perhaps) designing protocols and algorithms in networking systems (with case studies in wired and wireless networks)

What's the difference between

Communications
And
Networking

Finally

- I cannot / will not / should not be speaking alone in class
 - Questions
 - Comments
 - Disagreements
 - Debates ... are highly encouraged
- This course can be real fun
- Whether it will be ...
 - Is up to you and me

Hello!
I am ECE/CS 438

Computer Network Architecture

Past, Present, and Future

On the Shoulders of Giants

- 1961: Leonard Kleinrock published a work on packet switching
- 1962: J. Licklider described a worldwide network of computers called Galactic Network
- 1965: Larry Roberts designed the ARPANET that communicated over long distance links
- 1971: Ray Tomilson invents email at BBN
- 1972: Bob Kahn and Vint Cerf invented TCP for reliable packet transport

On the Shoulders of Giants ...

- 1973: David Clark, Bob Metcalfe implemented TCP and designed ethernet at Xerox PARC
- 1975: Paul Mockapetris developed DNS system for host lookup
- 1980: Radia Perlman invented spanning tree algorithm for bridging separate networks
- Things snowballed from there on ...

What we have today is beyond any of the inventors' imagination ...

And by "YOU" I mean ...

"Cool" internet appliances

"Cool" internet appliances

Web-enabled toaster + weather forecaster

And Of Course people ...

InterNetwork

- Millions of end points (you, me, and toasters) are connected over a network
 - Many end points can be addressed by numbers
 - Many others lie behind a virtual end point
- Many networks form a bigger network
- The overall strcture called the Internet
 - With a capital I
 - Defined as the network of networks

Internet structure: network of networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., MCI, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals

Tier-1 ISP: e.g., Sprint

Cables Laid Out in the Oceans

Optical Fiber cross-section

Cable Connections carry 95% traffic (rest?)

Internet structure: network of networks

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs
- France telecome, Tiscali, etc. buys from Sprint

Internet structure: network of networks

- "Tier-3" ISPs and local ISPs (Time Warner, Earthlink, etc.)
 - last hop ("access") network (closest to end systems)

- Internet structure: network of networks

 a packet passes through many networks!
 - Local ISP (uber) -> T3 (bus to ORD) -> T2 (flight to NYC) -> T1 (flight to Tokyo)

Organizing the giant structure

Networks are complex!

- many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:

Is there any hope of *organizing* structure of network?

Or at least our discussion of networks?

Turn to analogies in air travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

a series of steps

Layering of airline functionality

Layers: each layer implements a service

- layers communicate with peer layers
- rely on services provided by layer below

Why layering?

- Explicit structure allows identification, relationship of complex system's pieces
- Modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., runway delay (wheels up time) depends on clearance of destination runway ... doesn't change the baggage tagging systems ... or flight to gate assignment

Protocol "Layers"

- Service of each layer encapsulated
- Universally agreed services called PROTOCOLS

A large part of this course will focus on understanding protocols for networking systems

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP, DNS ...
- transport: host-host data transfer
 - TCP, UDP ...
- network: routing of datagrams from source to destination
 - IP, BGP, routing protocols ...
- link: data transfer between neighboring network elements
 - PPP, Ethernet, WiFi, Bluetooth ...
- physical: bits "on the wire"
 - OFDM, DSSS, CDMA, Coding ...

application
transport
network
link
physical

Success of Layering

- Protocol stack successful in Internet
- Internet uses wired physical layer links
 - Very reliable
 - Bit Error Rate (BER) = 10⁻⁸
- What about wireless networks
 - Very unreliable due to channel fluctuations
 - Due to co-channel interference
 - Due to external noise
- Does horizontal layering still hold?

Questions?

Assignment # -1

Watch "City in the Sky" documentary on Netflix

You will appreciate both airline systems and The Internet much more than you do now ...