Chapter 5: The Data Link Layer

Our goals:

- understand principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - o reliable data transfer, flow control: done!
- instantiation and implementation of various link layer technologies

Link Layer

 \square 5.6 Hubs and switches $\frac{20}{100}$ ■ 5.1 Introduction and services □ 5.7 PPP 5.2 Error detection and correction ■ 5.3Multiple access protocols □ 5.4 Link-Layer Addressing 5.5 Ethernet

Link Layer: Introduction

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Link langer

Link layer: context

- Datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- Each link protocol provides different

Traffic lights,
Airport control,
Platform scheduling,

transportation analogy

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - o plane: JFK to Geneva
 - o train: Geneva to Lausanne
- □ tourist = datagram
- transport segment = communication link
- travel agent = routing
 algorithm

Link Layer Services

- □ Framing, link access:
 - o encapsulate datagram into frame, adding header, trailer
 - o channel access if shared medium
- MAC" addresses used in frame headers to identify source, dest
 - different from IP address!
 - Reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit error link (fiber, some twisted pair)
 - o wireless links: high error rates
 - · Q: why both link-level and end-end reliability?

Link Layer Services (more)

- ☐ Flow Control:
 - o pacing between adjacent sending and receiving nodes
- □ Error Detection.
 - o errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- □ Error Correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit,
 but not at same time

Haf

Adaptors Communicating

- "adaptor" (aka NIC)
 - Ethernet card, PCMCI card, 802.11 card
- sending side:
 - encapsulates datagram in a frame
 - adds error checking bits, rdt, flow control, etc.

- - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to reving node
- adapter is semiautonomous
- □ link & physical layers

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- □ 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- 5.6 Hubs and switches
- □ 5.7 PPP
- 5.8 Link Virtualization:
 ATM

EDC= Error Detection and Correction bits (redundancy)

D = Data protected by error checking, may include header fields

1011001

- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - · larger EDC field yields better detection and correction

10 1000A

Parity Checking

Single Bit Parity:

Detect single bit errors

Detect

Two Dimensional Bit Parity:

Detect and correct single bit errors

Internet checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?
 More later

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access \ protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- □ 5.6 Hubs and switches
- □ 5.7 PPP
- 5.8 Link Virtualization:
 ATM

Multiple Access Links and Protocols

Two types of "links":

- point-to-point
 - PPP for dial-up access
 - o point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - traditional Ethernet
 - Bluetooth
 - 802.11 wireless LAN

(e.g. Wavelan)

Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - o collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - o no out-of-band channel for coordination

 Control comm? —> Planning

 Data Comm? —> Execution
 5: DataLink Layer

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. When one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. Simple

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random Access
 - o channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - o no a priori coordination among nodes
- □ two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumptions

- all frames same size
 - time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation

- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- ☐ if collision, node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

- collisions, wasting slots
- □ idle slots
- nodes must be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send

- Suppose N nodes with many frames to send, each transmits in slot with probability p
- □ prob that node 1 has N→∞ success in a slot = p(1-p)^{N-1}
- \square prob that any node has a success = $Np(1-p)^{N-1}$

- □ For max efficiency with N nodes, find p* that maximizes Np(1-p)^{N-1}
- For many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives 1/e = .37Lim Np*(1-p*)^{N-1} = f(N)

At best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - \circ frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure Aloha efficiency

```
P(success by given node) = P(node transmits) \cdot

P(no other node transmits in [t_0-1,t_0] \cdot

P(no other node transmits in [t_0,t_0+1]

= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}

= p \cdot (1-p)^{2(N-1)}
```

... choosing optimum p and then letting n -> infty ...

Even worse! = 1/(2e) = .18

M nodes.

CSMA (Carrier Sense Multiple Access)

Before talking & While talking

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

□ If channel sensed busy, defer transmission

Human analogy: don't interrupt others!

CSMA collisions

collisions can still occur:

propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

note:

role of distance & propagation delay in determining collision probability

spatial layout of nodes

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - o collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting
- human analogy: the polite conversationalist

CSMA/CD collision detection

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- o share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access,
 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking Turns" MAC protocols

Polling:

- master node "invites" slave nodes to transmit in turn
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Summary of MAC protocols

- □ What do you do with a shared media?
 - O Channel Partitioning, by time, frequency or code
 - Time Division, Frequency Division
 - Random partitioning (dynamic),
 - · ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
 - Taking Turns
 - polling from a central site, token passing

fro-rc Freeze Grand Brown ountdown gro-rc Choose of Climin, max bond # rand from [0, 16] time units If collision, choose new after Rand # from [0,32] If again coll -> choose from (0,64) attemp Exponential Backoff Once success, reset max = 16

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- 5.6 Hubs and switches
- □ 5.7 PPP
- 5.8 Link Virtualization:
 ATM