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Congestion Avoidance

n Control vs. avoidance
¡ Control: minimize impact of congestion when it occurs
¡ Avoidance: avoid producing congestion

n In terms of operating point limits
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Congestion Avoidance

n TCP�s strategy
¡ Control congestion once it happens
¡ Repeatedly increase load in an effort to find the point at which 

congestion occurs, then back off
n Alternative Strategy

¡ Predict when congestion is about to happen and reduce the rate 
at which hosts send data just before packets start being 
discarded

¡ Congestion avoidance, as compared to congestion control
n Two possibilities

¡ Host-centric
n TCP Vegas (may get some help from routers as in DECbit or via 

RED gateways)
¡ Router-centric

n Virtual circuits with reserved resources (ATM, RSVP)
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DECbit (Destination 
Experiencing Congestion Bit)

n Developed for the Digital Network 
Architecture

n Basic idea
¡ One bit allocated in packet header
¡ Any router experiencing congestion sets bit
¡ Destination returns bit to source
¡ Source adjusts rate based on bits

n Note that responsibility is shared
¡ Routers identify congestion
¡ Hosts act to avoid congestion
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DECbit

n Router
¡ Monitors length over last busy + idle cycle

¡ Sets congestion bit if average queue length is greater then 1 
when packet arrives

¡ Attempts to balance throughput against delay
n smaller values result in more idle time

n larger values result in more queueing delay
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DECbit

n End Hosts
¡ Destination echoes congestion bit back to source
¡ Source records how many packets resulted in set bit
¡ If less than 50% of last window had bit set

n Increase CongestionWindow by 1 packet
¡ If 50% or more of last window had bit set

n Decrease CongestionWindow by 0.875 percent

n Note:
¡ Techniques used in DECbit known as explicit congestion 

notification (ECN)
¡ Proposal to add ECN bit to TCP in progress
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Router-Based Congestion 
Avoidance

n Random Early Detection (RED) gateways
¡ Developed for use with TCP
¡ Basic idea

n Implicit rather than explicit notification
n When a router is �almost� congested
n Drop packets randomly

¡ Responsibility is again shared
n Router identifies, host acts
n Relies on TCP�s response to dropped packets



RED Overview

n Observation
¡ Transient congestion 

n Should be accommodated for by having large enough 
queues

¡ Longer-lived congestion 
n Reflected as an increase in the average queue size

n Approach
¡ Detect incipient congestion from average queue 

size
n Upper bound for average queue length
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RED Overview

n Notify the end host of congestion
¡ Dropping packet
¡ Marking packet

n Select connections randomly 
¡ Avoid global synchronization

n Change dropping probability dynamically
n Avoid bias against bursty data

¡ Use average queue length
¡ Random marking
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Random Early Detection 
(RED)

n Hosts
¡ Implement TCP congestion control
¡ Back off when a packet is dropped

n Routers
¡ Compute average queue length (exponential 

moving average)
n AvgLen = (1 – Weight) * AvgLen + Weight * 

SampleLen
n 0 < Weight < 1 (usually 0.002)
n SampleLen is queue length at packet arrival time
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RED – Dropping Policy

n If AvgLen £ MinThreshold
¡ Enqueue packet

n If MinThreshold < AvgLen < MaxThreshold
¡ Calculate P and drop arriving packet with probability P

n If MaxThreshold £ AvgLen
¡ Drop arriving packet

MaxThreshold MinThreshold

AvgLenAvgLen AvgLen
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RED – Dropping Probability

n Computing P
¡ P is a function of AvgLen and Count
¡ Count is the number of packets that have arrived since 

last reset
¡ Reset happens when either a packet is dropped or 

AvgLen is above MaxThreshold

TempP = 
(MaxP) * (AvgLen – MinThreshold)

MaxThreshold - MinThreshold

P = 
TempP

(1 – count * TempP)
AvgLen

P(drop)
1.0

MaxP

MinThresh MaxThresh



Calculate Average Queue Size

n Low pass filter
¡ If idle: 
¡ Example: wq = 0.002
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maxth = 15
minth = 5

instantaneous queue size

average queue size



minth and maxth

n Determined by the desired average queue size
¡ Should be set sufficiently to maximize network utilization

n minth
¡ Controls the size of bursts

n maxth
¡ Depends on the maximum average delay

n maxth - minth
¡ Should be larger than increase in average queue size in 

one round trip time
¡ Avoid global synchronization
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RED Parameters

n MaxP is typically set to 0.02
¡ When the average queue size is halfway 

between the two thresholds, the gateway drops 
roughly 1 out of 50 packets.

n MinThreshold is typically max/2
n Choosing parameters

¡ Carefully tuned to maximize power function
¡ Confirmed through simulation
¡ But answer depends on accuracy of traffic 

model



Spring 2018 © CS 438 Staff - University of Illinois 16

Tuning RED

n Probability of dropping a particular flow�s packet(s)
¡ Roughly proportional to the that flow�s current share of the 

bandwidth 
n If traffic is bursty

¡ MinThreshold should be sufficiently large to allow link utilization 
to be maintained at an acceptably high level

¡ If no buffer space is available, RED uses Tail Drop
n Difference between two thresholds 

¡ Should be larger than the typical increase in the calculated 
average queue length in one RTT

¡ Setting MaxThreshold to twice MinThreshold is reasonable for 
traffic on today�s Internet

n Penalty Box for Offenders
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Source-Based Congestion 
Avoidance

n Idea
¡ Source watches for some sign that some 

router�s queue is building up and 
congestion will happen soon

n Examples
¡ RTT is growing

¡ Sending rate flattens
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Source-Based Congestion 

Avoidance

n Observe RTT

¡ If current RTT is greater than average of minRTT and maxRTT, 
decrease congestion window by one-eigth

n Observe RTT and Window Size

¡ Adjust window once every two RTT

n If (CurrWindow – OldWindow) * (CurrRTT – OldRTT) > 0, decrease 
window by one-eigth, otherwise increase window my one MSS

n Observe sending rate

¡ Increase window and compare throughput to previous value

n Observe throughput

¡ Compare measured throughput with observed throughput

¡ TCP Vegas
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TCP Vegas
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TCP Vegas

n Basic idea
¡ Watch for signs of queue growth
¡ In particular, difference between

n increasing congestion window
n stable throughput (presumably at capacity)

¡ Keep just enough �extra data� in the 
network
n Time to react if bandwidth decreases
n Data available if bandwidth increases
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TCP Vegas

n Implementation
¡ Estimate uncongested RTT

n baseRTT = minimum measured RTT
n Expected throughput = congestion window / 

baseRTT
¡ Measure throughput each RTT

n Mark time of sending distinguished packet
n Calculate data sent between send time and 

receipt of ACK
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TCP Vegas

¡ Act to keep the difference between estimated 
and actual throughput in a specified range
n Below minimum threshold

¡ Increase congestion window
n Above maximum threshold

¡ Decrease congestion window

¡ Additive decrease used only to avoid congestion
¡ Want between 1 and 3 packets of extra data 

(used to pick min/max thresholds)
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TCP Vegas Algorithm

n Let BaseRTT be minimum of all measured RTTs
¡ Commonly the RTT of the first packet

n If not overflowing the connection, then
¡ ExpectRate = CongestionWindow/BaseRTT

n Source calculates sending rate (ActualRate) once per RTT
n Source compares ActualRate with ExpectRate

¡ Diff = ExpectedRate – ActualRate
¡ if Diff < a 

n Increase CongestionWindow linearly
¡ else if Diff > b

n Decrease CongestionWindow linearly
¡ else

n Leave CongestionWindow unchanged
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TCP Vegas Algorithm

n Parameters

¡ a = 1 packet

¡ b = 3 packets

n Even faster 

retransmit

¡ Keep fine-

grained 

timestamps for 

each packet

¡ Check for 

timeout on first 

duplicate ACK
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