
Spring 2018 © CS 438 Staff - University of Illinois 1

Next Topic: Vacation Planning

UIUC

Chicago

Monterey

San Francisco

Chicago to
San Francisco:

ALL FLIGHTS FULL

I�ll wait until

Spring.



Spring 2018 © CS 438 Staff - University of Illinois 2

Congestion Avoidance

n Control vs. avoidance
¡ Control: minimize impact of congestion when it occurs
¡ Avoidance: avoid producing congestion

n In terms of operating point limits

loadpo
w

er

optimal load

idealized
power curve

controlavoidance



Spring 2018 © CS 438 Staff - University of Illinois 3

Congestion Avoidance

n TCP�s strategy
¡ Control congestion once it happens
¡ Repeatedly increase load in an effort to find the point at which 

congestion occurs, then back off
n Alternative Strategy

¡ Predict when congestion is about to happen and reduce the rate 
at which hosts send data just before packets start being 
discarded

¡ Congestion avoidance, as compared to congestion control
n Two possibilities

¡ Host-centric
n TCP Vegas (may get some help from routers as in DECbit or via 

RED gateways)
¡ Router-centric

n Virtual circuits with reserved resources (ATM, RSVP)



Spring 2018 © CS 438 Staff - University of Illinois 4

DECbit (Destination 
Experiencing Congestion Bit)

n Developed for the Digital Network 
Architecture

n Basic idea
¡ One bit allocated in packet header
¡ Any router experiencing congestion sets bit
¡ Destination returns bit to source
¡ Source adjusts rate based on bits

n Note that responsibility is shared
¡ Routers identify congestion
¡ Hosts act to avoid congestion



Spring 2018 © CS 438 Staff - University of Illinois 5

DECbit

n Router
¡ Monitors length over last busy + idle cycle

¡ Sets congestion bit if average queue length is greater then 1 
when packet arrives

¡ Attempts to balance throughput against delay
n smaller values result in more idle time

n larger values result in more queueing delay

Q
ue

ue
 le

ng
th

Current
time

Time
Current cyclePrevious cycle

Averaging
interval



Spring 2018 © CS 438 Staff - University of Illinois 6

DECbit

n End Hosts
¡ Destination echoes congestion bit back to source
¡ Source records how many packets resulted in set bit
¡ If less than 50% of last window had bit set

n Increase CongestionWindow by 1 packet
¡ If 50% or more of last window had bit set

n Decrease CongestionWindow by 0.875 percent

n Note:
¡ Techniques used in DECbit known as explicit congestion 

notification (ECN)
¡ Proposal to add ECN bit to TCP in progress



Spring 2018 © CS 438 Staff - University of Illinois 7

Router-Based Congestion 
Avoidance

n Random Early Detection (RED) gateways
¡ Developed for use with TCP
¡ Basic idea

n Implicit rather than explicit notification
n When a router is �almost� congested
n Drop packets randomly

¡ Responsibility is again shared
n Router identifies, host acts
n Relies on TCP�s response to dropped packets



RED Overview

n Observation
¡ Transient congestion 

n Should be accommodated for by having large enough 
queues

¡ Longer-lived congestion 
n Reflected as an increase in the average queue size

n Approach
¡ Detect incipient congestion from average queue 

size
n Upper bound for average queue length

Spring 2018 © CS 438 Staff - University of Illinois 8



RED Overview

n Notify the end host of congestion
¡ Dropping packet
¡ Marking packet

n Select connections randomly 
¡ Avoid global synchronization

n Change dropping probability dynamically
n Avoid bias against bursty data

¡ Use average queue length
¡ Random marking

Spring 2018 © CS 438 Staff - University of Illinois 9



Spring 2018 © CS 438 Staff - University of Illinois 10

Random Early Detection 
(RED)

n Hosts
¡ Implement TCP congestion control
¡ Back off when a packet is dropped

n Routers
¡ Compute average queue length (exponential 

moving average)
n AvgLen = (1 – Weight) * AvgLen + Weight * 

SampleLen
n 0 < Weight < 1 (usually 0.002)
n SampleLen is queue length at packet arrival time



Spring 2018 © CS 438 Staff - University of Illinois 11

RED – Dropping Policy

n If AvgLen £ MinThreshold
¡ Enqueue packet

n If MinThreshold < AvgLen < MaxThreshold
¡ Calculate P and drop arriving packet with probability P

n If MaxThreshold £ AvgLen
¡ Drop arriving packet

MaxThreshold MinThreshold

AvgLenAvgLen AvgLen



Spring 2018 © CS 438 Staff - University of Illinois 12

RED – Dropping Probability

n Computing P
¡ P is a function of AvgLen and Count
¡ Count is the number of packets that have arrived since 

last reset
¡ Reset happens when either a packet is dropped or 

AvgLen is above MaxThreshold

TempP = 
(MaxP) * (AvgLen – MinThreshold)

MaxThreshold - MinThreshold

P = 
TempP

(1 – count * TempP)
AvgLen

P(drop)
1.0

MaxP

MinThresh MaxThresh



Calculate Average Queue Size

n Low pass filter
¡ If idle: 
¡ Example: wq = 0.002

Spring 2018 © CS 438 Staff - University of Illinois 13

maxth = 15
minth = 5

instantaneous queue size

average queue size



minth and maxth

n Determined by the desired average queue size
¡ Should be set sufficiently to maximize network utilization

n minth
¡ Controls the size of bursts

n maxth
¡ Depends on the maximum average delay

n maxth - minth
¡ Should be larger than increase in average queue size in 

one round trip time
¡ Avoid global synchronization

Spring 2018 © CS 438 Staff - University of Illinois 14



Spring 2018 © CS 438 Staff - University of Illinois 15

RED Parameters

n MaxP is typically set to 0.02
¡ When the average queue size is halfway 

between the two thresholds, the gateway drops 
roughly 1 out of 50 packets.

n MinThreshold is typically max/2
n Choosing parameters

¡ Carefully tuned to maximize power function
¡ Confirmed through simulation
¡ But answer depends on accuracy of traffic 

model



Spring 2018 © CS 438 Staff - University of Illinois 16

Tuning RED

n Probability of dropping a particular flow�s packet(s)
¡ Roughly proportional to the that flow�s current share of the 

bandwidth 
n If traffic is bursty

¡ MinThreshold should be sufficiently large to allow link utilization 
to be maintained at an acceptably high level

¡ If no buffer space is available, RED uses Tail Drop
n Difference between two thresholds 

¡ Should be larger than the typical increase in the calculated 
average queue length in one RTT

¡ Setting MaxThreshold to twice MinThreshold is reasonable for 
traffic on today�s Internet

n Penalty Box for Offenders



Spring 2018 © CS 438 Staff - University of Illinois 17

Source-Based Congestion 
Avoidance

n Idea
¡ Source watches for some sign that some 

router�s queue is building up and 
congestion will happen soon

n Examples
¡ RTT is growing

¡ Sending rate flattens



Spring 2018 © CS 438 Staff - University of Illinois 18

Source-Based Congestion 

Avoidance

n Observe RTT

¡ If current RTT is greater than average of minRTT and maxRTT, 
decrease congestion window by one-eigth

n Observe RTT and Window Size

¡ Adjust window once every two RTT

n If (CurrWindow – OldWindow) * (CurrRTT – OldRTT) > 0, decrease 
window by one-eigth, otherwise increase window my one MSS

n Observe sending rate

¡ Increase window and compare throughput to previous value

n Observe throughput

¡ Compare measured throughput with observed throughput

¡ TCP Vegas



Spring 2018 © CS 438 Staff - University of Illinois 19

TCP Vegas

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

C
on

ge
st

io
n 

W
in

do
K

B

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

O
bs

er
ve

d 
Th

ro
ug

hp
ut

K
B

ps

1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

ue
ue

 s
iz

e 
in

 
ro

ut
er 5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5



Spring 2018 © CS 438 Staff - University of Illinois 20

TCP Vegas

n Basic idea
¡ Watch for signs of queue growth
¡ In particular, difference between

n increasing congestion window
n stable throughput (presumably at capacity)

¡ Keep just enough �extra data� in the 
network
n Time to react if bandwidth decreases
n Data available if bandwidth increases



Spring 2018 © CS 438 Staff - University of Illinois 21

TCP Vegas

n Implementation
¡ Estimate uncongested RTT

n baseRTT = minimum measured RTT
n Expected throughput = congestion window / 

baseRTT
¡ Measure throughput each RTT

n Mark time of sending distinguished packet
n Calculate data sent between send time and 

receipt of ACK



Spring 2018 © CS 438 Staff - University of Illinois 22

TCP Vegas

¡ Act to keep the difference between estimated 
and actual throughput in a specified range
n Below minimum threshold

¡ Increase congestion window
n Above maximum threshold

¡ Decrease congestion window

¡ Additive decrease used only to avoid congestion
¡ Want between 1 and 3 packets of extra data 

(used to pick min/max thresholds)



Spring 2018 © CS 438 Staff - University of Illinois 23

TCP Vegas Algorithm

n Let BaseRTT be minimum of all measured RTTs
¡ Commonly the RTT of the first packet

n If not overflowing the connection, then
¡ ExpectRate = CongestionWindow/BaseRTT

n Source calculates sending rate (ActualRate) once per RTT
n Source compares ActualRate with ExpectRate

¡ Diff = ExpectedRate – ActualRate
¡ if Diff < a 

n Increase CongestionWindow linearly
¡ else if Diff > b

n Decrease CongestionWindow linearly
¡ else

n Leave CongestionWindow unchanged



Spring 2018 © CS 438 Staff - University of Illinois 24

TCP Vegas Algorithm

n Parameters

¡ a = 1 packet

¡ b = 3 packets

n Even faster 

retransmit

¡ Keep fine-

grained 

timestamps for 

each packet

¡ Check for 

timeout on first 

duplicate ACK

70

60

50

40

30

20

10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
p
s

240

200

160

120

80

40

Time (seconds)


