
Spring 2018 © CS 438 Staff - University of Illinois 1

Congestion Control

Overview
Queueing Disciplines
TCP Congestion Control
Congestion Avoidance Mechanisms
Quality of Service

Spring 2018 © CS 438 Staff - University of Illinois 2

Today�s Topic: Vacations

UIUC

Chicago

Monterey

San Francisco

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Planning a vacation?
Try a trip to scenic Monterey, California!
Monterey is a mere 3 hops from UIUC.What

happened?

Spring 2018 © CS 438 Staff - University of Illinois 3

Congestion Control

reading: Peterson and Davie, Ch. 6

n Basics:
¡ Problem, terminology, approaches, metrics

n Solutions
¡ Router-based: queueing disciplines
¡ Host-based: TCP congestion control

n Congestion avoidance
¡ DECbit
¡ RED gateways

n Quality of service

Spring 2018 © CS 438 Staff - University of Illinois 4

Congestion Control Basics

n Problem
¡ Demand for network resources can grow beyond

the resources available
¡ Want to provide �fair� amount to each user

n Examples
¡ Bandwidth between Chicago and San Francisco
¡ Bandwidth in a network link
¡ Buffers in a queue

Congestion Collapse

n Definition
¡ Increase in network load results in decrease of useful work

done

n Many possible causes
¡ Spurious retransmissions of packets still in flight

n Classical congestion collapse
n Solution: better timers and TCP congestion control

¡ Undelivered packets
n Packets consume resources and are dropped elsewhere in

network
n Solution: congestion control for ALL traffic

Spring 2018 © CS 438 Staff - University of Illinois 5

Dealing with Congestion

n Range of solutions
¡ Congestion control

n Cure congestion when it happens
¡ Congestion avoidance

n Predict when congestion might occur and avoid causing it
¡ Resource allocation

n Prevent congestion from occurring

n Model of network
¡ Packet-switched internetwork (or network)
¡ Connectionless flows (logical channels/connections)

between hosts

Spring 2018 © CS 438 Staff - University of Illinois 6

Spring 2018 © CS 438 Staff - University of Illinois 7

Congestion Control

n Goal
¡ Effective and fair allocation of resources among

a collection of competing users
¡ Learning when to say no and to whom

n Resources
¡ Bandwidth
¡ Buffers

n Problem
¡ Contention at routers causes packet loss

Spring 2018 © CS 438 Staff - University of Illinois 8

Flow Control vs. Congestion
Control

n Flow control
¡ Preventing one sender from overrunning

the capacity of a slow receiver
n Congestion control

¡ Preventing a set of senders from
overloading the network!

Congestion is Natural

n Because Internet traffic is bursty!
n If two packets arrive at the same time

¡ The node can only transmit one
¡ … and either buffers or drops the other

Spring 2018 © CS 438 Staff - University of Illinois 9

Congestion is Natural

n Because Internet traffic is bursty!

n If two packets arrive at the same time

¡ The node can only transmit one

¡ … and either buffers or drops the other

n If many packets arrive in a short period of time

¡ The node cannot keep up with the arriving traffic

¡ Causes delays, and the buffer may eventually overflow

Spring 2018 © CS 438 Staff - University of Illinois 10

Load and Delay

Spring 2018 © CS 438 Staff - University of Illinois 11

Average
Packet delay

Load

Typical behavior of queueing
systems with bursty arrivals:

Power

Load

Load
Power

Delay
=

�optimal
load�

Ideal: low delays and high utilization
Reality: must balance the two

Maximizing �power� is an example

Spring 2018 © CS 438 Staff - University of Illinois 12

Basic Design Choices

n Prevention or Cure?
¡ Pre-allocate resources to avoid congestion
¡ Send data and control congestion if and when it

occurs
n Possible implementation points

¡ Hosts at the edge of the network
n Transport protocol

¡ Routers inside the network
n Queueing disciplines

n Underlying service model
¡ Best effort vs. quality of service (QoS)

Spring 2018 © CS 438 Staff - University of Illinois 13

Flows

n Sequence of packets sent between
source/destination pair
¡ Similar to end-to-end abstraction of channel, but seen at

routers
n Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

Router State

n Soft state:
¡ Information about flows
¡ Helps control congestion
¡ Not necessary for correct

routing

n Hard state:
¡ state used to support

routing

Spring 2018 © CS 438 Staff - University of Illinois 14

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

Spring 2018 © CS 438 Staff - University of Illinois 15

Congestion Control

n Router role

¡ Controls forwarding and dropping policies

¡ Can send feedback to source

n Host role

¡ Monitors network conditions

¡ Adjusts accordingly

n Routing vs. congestion

¡ Effective adaptive routing schemes

can sometimes help congestion

¡ But not always

Spring 2018 © CS 438 Staff - University of Illinois 16

Congestion Control Taxonomy

feedback-based
reservation-based,

implemented by routers,
controlled by rate,

a.k.a. quality of service/QoS

explicit feedback,
implemented by routers,
but not per flow…why?

implicit feedback,
implemented by hosts,
controlled by window

abstraction,
a.k.a. best effort

congestion control

Router-Centric vs. Host-
Centric Flow Control

n Router-centric
¡ Each router takes

responsibility for
deciding
n When packets are

forwarded
n Which packets are

to be dropped
n Informing hosts of

sending limitations

n Host-centric
¡ Hosts observe

network conditions
and adjust their
behavior
accordingly

Spring 2018 © CS 438 Staff - University of Illinois 17

Reservation-Based vs.
Feedback-Based Flow Control

n Reservation-based
¡ End host asks network

for capacity at flow
establishment time

¡ Routers along flow�s
route allocate
appropriate resources

¡ If resources are not
available, flow is
rejected

¡ Implies the use of
router-centric
mechanisms

n Feedback-based
¡ End host begins

sending without asking
for capacity

¡ End host adjusts
sending rate according
to feedback
n Explicit vs. implicit

feedback mechanisms
¡ May use router-centric

(explicit) or host-centric
(implicit) mechanisms

Spring 2018 © CS 438 Staff - University of Illinois 18

Per-flow Congestion Feedback

n Question
¡ Why is explicit per-flow congestion

feedback from routers rarely used in
practice?

Spring 2018 © CS 438 Staff - University of Illinois 19

Per-flow Congestion Feedback

n Problem
¡ Too many sources to track

n Millions of flows may fan in to one router
n Can�t send feedback to all of them

¡ Adds complexity to router
n Need to track more state
n Certainly can�t track state for all sources

¡ Wastes bandwidth: network already congested,
not the time to generate more traffic

¡ Can�t force the sources (hosts) to use feedback
Spring 2018 © CS 438 Staff - University of Illinois 20

Spring 2018 © CS 438 Staff - University of Illinois 21

Window-based vs. Rate-based
Flow Control

n Remember
¡ Given a RTT and window size W, long term throughput

rate is
n Rate = min(link speed, W/RTT)

n Since rate can be controlled by the window size, is
there really any difference between controlling the
window size and controlling the rate?

Rate

W

Spring 2018 © CS 438 Staff - University of Illinois 22

Rate Control

n Question
¡ Why consider rate control?

n Problems
¡ Buffer space (window size) is

an intrinsic physical quantity
¡ Can provide rate control with

window control
¡ Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled
transmissions

rate-controlled
transmissions

Answer
Want rate control
when granularity of
averaging must be
smaller than RTT

Spring 2018 © CS 438 Staff - University of Illinois 23

Criticisms of Resource

Allocation

n Example

¡ Divide 10 Gbps bandwidth out of UIUC

n Case 1: reserve whatever you want

¡ Users� line of thought

n On average, I don�t need much bandwidth, but when

my personal Web crawler goes to work, I need at least

100 Mbps, so I�ll reserve that much.

¡ Result

n 100 users consume all bandwidth, all others get 0

Spring 2018 © CS 438 Staff - University of Illinois 24

Criticisms of Resource
Allocation

n Example
¡ Divide 10 Gbps bandwidth out of UIUC

n Case 2: fair/equitable reservations
¡ 35,000 students + 5,000 faculty and staff
¡ Each user gets 250 kbps, almost 5x a modem!

Spring 2018 © CS 438 Staff - University of Illinois 25

Resource Allocation

n Back to the air travel analogy
¡ Daily Chicago to San Francisco flight, 198 seats
¡ Case 1: reserve whatever you want

n 198 of us get seats. I�m Gold...are you?

¡ Case 2: fair/equitable reservations
n 2,000,000 possible customers
n 0.000099 seats per customer per flight
n Disclaimer:

the passenger assumes all risks and damages
related to unsuccessful reassembly in Chicago

Spring 2018 © CS 438 Staff - University of Illinois 27

Window Size

Source DestinationC

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C
Delay

WRTT/2

Power = throughput/delay

W
RTT*C

Fairness

n Goals
¡ Allocate resources �fairly�
¡ Isolate ill-behaved users
¡ Still achieve statistical multiplexing

n One flow can fill entire pipe if no contenders
n Work conserving à scheduler never idles link if it has a

packet

n At what granularity?
¡ Flows, connections, domains?

Spring 2018 © CS 438 Staff - University of Illinois 28

Spring 2018 © CS 438 Staff - University of Illinois 29

What�s Fair?

Flow A

Flow B Flow C Flow D

This is the so-
called �max-min

fair� rate
allocation. The
minimum rate is

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd =
3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2

Spring 2018 © CS 438 Staff - University of Illinois 30

Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth
2. No other scheme with 1 has higher min bandwidth
3. 2 remains true recursively on removing minimal

user µI = MIN(µfair, ri)

Max-Min Fairness: Example

n Capacity(C) = 10
¡ 3 Flows: r1 = 8, r2 = 6, r3 = 2

n C/3 = 3.33 ®
¡ Can service all of r3
¡ Remove r3 from the accounting: C = C – r3 = 8; N = 2

n C/2 = 4 ®
¡ Can�t service all of r1 or r2
¡ So hold them to the remaining fair share: f = 4

Spring 2018 © CS 438 Staff - University of Illinois 31

8

6

2
4
4

2

10

Queueing Disciplines

n Goal
¡ Decide how packets are buffered while waiting

to be transmitted
¡ Provide protection from ill-behaved flows
¡ Each router MUST implement some queuing

discipline regardless of what the resource
allocation mechanism is

n Impact
¡ Directly impacts buffer space usage
¡ Indirectly impacts flow control

Spring 2018 © CS 438 Staff - University of Illinois 32

Queueing Disciplines

n Allocate bandwidth
¡ Which packets get transmitted

n Allocate buffer space
¡ Which packets get discarded

n Affect packet latency
¡ When packets get transmitted

Spring 2018 © CS 438 Staff - University of Illinois 33

Spring 2018 © CS 438 Staff - University of Illinois 34

Scheduling Policies

n FIFO (First In First Out) a.k.a. FCFS (First Come
First Serve)
¡ Service

n In order of arrival to the queue
¡ Management

n Packets that arrive to a full buffer are discarded
n Another option: discard policy determines which packet to

discard (new arrival or something already queued)

Spring 2018 © CS 438 Staff - University of Illinois 35

Scheduling Policies

n FIFO (First In First Out)
¡ Problem 1: send more packets, get more service

n Selfish senders trying to grab as much as they can

n Malicious senders trying to deny service to others

¡ Problem 2: not all packets should be equal

Spring 2018 © CS 438 Staff - University of Illinois 36

Scheduling Policies

n FIFO
¡ Does not discriminate between traffic sources
¡ Congestion control left to the sources
¡ Tail drop dropping policy
¡ Fairness for latency
¡ Minimizes per-packet delay
¡ Bandwidth not considered (not good for congestion)

Spring 2018 © CS 438 Staff - University of Illinois 37

Scheduling Policies

n Priority Queuing

¡ Classes have different priorities

n May depend on explicit marking or other header info

¡ e.g., IP source or destination, TCP Port numbers, etc.

¡ Service

n Transmit packet from highest priority class with a non-empty

queue

Spring 2018 © CS 438 Staff - University of Illinois 38

Scheduling Policies

n Priority Queuing
¡ Isolation for the high-priority traffic

n Almost like it has a dedicated link
n Except for the (small) delay for packet transmission

¡ High-priority packet arrives during transmission of low-priority
¡ Router completes sending the low-priority traffic first

Spring 2018 © CS 438 Staff - University of Illinois 39

Scheduling Policies

n Priority Queueing Versions
¡ Preemptive

n Postpone low-priority processing if high-priority packet
arrives

¡ Non-preemptive
n Any packet that starts getting processed finishes

before moving on

n Limitation
¡ May starve lower priority flows

Spring 2018 © CS 438 Staff - University of Illinois 40

Scheduling Policies

n Round Robin
¡ Each flow gets its own queue
¡ Circulate through queues, process one packet (if

queue non-empty), then move to next queue

Spring 2018 © CS 438 Staff - University of Illinois 41

Scheduling Policies

n Fair Queueing (FQ)
¡ Explicitly segregates

traffic based on flows

¡ Ensures no flow
captures more than its
share of the capacity

¡ Fairness for
bandwidth

¡ Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-
Robin
service

Each flow is guaranteed ¼
of capacity

Spring 2018 © CS 438 Staff - University of Illinois 42

Fair Queueing with Variable
Packet Length

n How should we implement FQ if packets are not all
the same length?
¡ Bit-by-bit round-robin

n Not feasible to implement, must use packet scheduling
n Solution: approximate

4 8

6 10

44 4 5

?

Spring 2018 © CS 438 Staff - University of Illinois 43

Fair Queueing with Variable

Packet Length

n Idea

¡ Let S
i
= amount of service flow i has received so far

¡ Always serve a flow with minimum value of S
i

n Can also use minimum (S
i
+ next packet length)

¡ Upon serving a packet of length P from flow i, update:

n S
i
= S

i
+ P

n Never leave the link idle if there is a packet to send

¡ Work conserving

n A source will gets its fair share of the bandwidth

n Unused bandwidth will be evenly divided between other

sources

Spring 2018 © CS 438 Staff - University of Illinois 44

Fair Queueing with Variable
Packet Length

n Problem
¡ A flow resumes sending packets after being quiet for a

long time
n Effect

¡ Such a flow could be considered to have �saved up
credit�

¡ Can lock out all other flows until credits are level again
n Solution

¡ Enforce �use it or lose it policy�
n Compute Smin = min(Si such that queue i is not empty)
n If queue j is empty, set Sj = Smin

Spring 2018 © CS 438 Staff - University of Illinois 45

Fair Queueing with Variable
Packet Length

n Problem
¡ A flow resumes sending packets after being quite for a

long time
n Effect

¡ Such a flow could be considered to have �saved up
credit�

¡ Can lock out all other flows until credits are level again
n Solution

¡ Enforce �use it or lose it policy�
n Compute Smin = min(Si such that queue i is not empty)
n If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet

that arrives on each flow
• Treat all Fi as timestamps
• Next packet to transmit is one

with lowest timestamp

Spring 2018 © CS 438 Staff - University of Illinois 46

Extension: Weighted Fair
Queueing

n Extend fair queueing
¡ Notion of importance for each flow

n Suppose flow i has weight wi
¡ Example: wi could be the fraction of total

service that flow i is targeted for

n Need only change basic update to
¡ Si = Si + P/wi

Fair Queuing Tradeoffs

n FQ can control congestion by monitoring flows
¡ Non-adaptive flows can still be a problem – why?

n Complex state
¡ Must keep queue per flow

n Hard in routers with many flows (e.g., backbone routers)
n Flow aggregation is a possibility (e.g. do fairness per

domain)

n Complex computation
¡ Classification into flows may be hard
¡ Must keep queues sorted by finish times
¡ Changes whenever the flow count changes

Spring 2018 © CS 438 Staff - University of Illinois 47

Spring 2018 © CS 438 Staff - University of Illinois 48

Fair Queueing

n Question
¡ What makes up a flow for fair queueing in the

Internet?
n Considerations

¡ Too many resources to have separate
queues/variables for host-to-host flows

¡ Scale down number of flows
¡ Typically just based on inputs

n e.g., share outgoing STS-12 between incoming ISP�s

Spring 2018 © CS 438 Staff - University of Illinois 49

TCP Congestion Control

Host Solutions

n Host has very little information
¡ Assumes best-effort network
¡ Acts independently of other hosts

n Host actions
¡ Reduce transmission rate below

congestion threshold
¡ Continuously monitor network for signs of

congestion
Spring 2018 © CS 438 Staff - University of Illinois 50

Detecting Congestion

n How can a TCP sender determine that the network
is under stress?

n Network could tell it (ICMP Source Quench)
¡ Risky, because during times of overload the signal itself

could be dropped (and add to congestion)!

n Packet delays go up (knee of load-delay curve)
¡ Tricky: noisy signal (delay often varies considerably)

n Packet loss
¡ Fail-safe signal that TCP already has to detect

¡ Complication: non-congestive loss (checksum errors)

Spring 2018 © CS 438 Staff - University of Illinois 51

TCP Congestion Control

n Idea
¡ Assumes best-effort network

n FIFO or FQ
¡ Each source determines network capacity for itself
¡ Implicit feedback
¡ ACKs pace transmission (self-clocking)

n Challenge
¡ Determining initial available capacity
¡ Adjusting to changes in capacity in a timely manner

Spring 2018 © CS 438 Staff - University of Illinois 52

TCP Congestion Control

n Basic idea
¡ Add notion of congestion window
¡ Effective window is smaller of

n Advertised window (flow control)
n Congestion window (congestion control)

¡ Changes in congestion window size
n Slow increases to absorb new bandwidth
n Quick decreases to eliminate congestion

Spring 2018 © CS 438 Staff - University of Illinois 53

Spring 2018 © CS 438 Staff - University of Illinois 54

TCP Congestion Control

n Specific strategy
¡ Self-clocking

n Send data only when outstanding data ACK�d
n Equivalent to send window limitation mentioned

receiversender

Spring 2018 © CS 438 Staff - University of Illinois 55

TCP Congestion Control

n Specific strategy
¡ Self-clocking

n Send data only when outstanding data ACK�d
n Equivalent to send window limitation mentioned

¡ Growth
n Add one maximum segment size (MSS) per

congestion window of data ACK�d
n It�s really done this way, at least in Linux:

¡ see tcp_cong_avoid in tcp_input.c.
¡ Actually, every ack for new data is treated as an MSS

ACK�d
n Known as additive increase

Spring 2018 © CS 438 Staff - University of Illinois 56

TCP Congestion Control

n Specific strategy (continued)
¡ Decrease

n Cut window in half when timeout occurs
n In practice, set window = window /2
n Known as multiplicative decrease

¡ Additive increase, multiplicative decrease
(AIMD)

Additive Increase/
Multiplicative Decrease

n Objective
¡ Adjust to changes in available capacity

n Basic idea
¡ Consequences of over-sized window much worse than

having an under-sized window
n Over-sized window: packets dropped and retransmitted
n Under-sized window: somewhat lower throughput

Spring 2018 © CS 438 Staff - University of Illinois 57

Additive Increase/
Multiplicative Decrease

n Tools
¡ React to observance of congestion
¡ Probe channel to detect more resources

n Observation
¡ On notice of congestion

n Decreasing too slowly will not be reactive enough
¡ On probe of network

n Increasing too quickly will overshoot limits

Spring 2018 © CS 438 Staff - University of Illinois 58

Spring 2018 © CS 438 Staff - University of Illinois 59

Additive Increase/
Multiplicative Decrease

n New TCP state variable
¡ CongestionWindow

n Similar to AdvertisedWindow for flow control
¡ Limits how much data source can have in transit

n MaxWin = MIN(CongestionWindow,
AdvertisedWindow)

n EffWin = MaxWin - (LastByteSent -
LastByteAcked)

n TCP can send no faster then the slowest component,
network or destination

n Idea
¡ Increase CongestionWindow when congestion goes

down
¡ Decrease CongestionWindow when congestion goes up

Spring 2018 © CS 438 Staff - University of Illinois 60

Additive Increase/
Multiplicative Decrease

n Question
¡ How does the source determine whether or not

the network is congested?

n Answer
¡ Timeout signals packet loss
¡ Packet loss is rarely due to transmission error

(on wired lines)
¡ Lost packet implies congestion!

Spring 2018 © CS 438 Staff - University of Illinois 61

Additive Increase/
Multiplicative Decrease

n Algorithm
¡ Increment CongestionWindow by one

packet per RTT
n Linear increase

¡ Divide CongestionWindow by two
whenever a timeout occurs
n Multiplicative decrease

n In practice
¡ increment a little for each ACK

Inc = MSS * MSS/CongestionWindow
CongestionWindow += Inc

Source Destination

…

AIMD – Sawtooth Trace

n Packet loss is seen as sign of congestion and
results in a multiplicative rate decrease
¡ Factor of 2

n TCP periodically probes for available bandwidth by
increasing its rate

Spring 2018 © CS 438 Staff - University of Illinois 62

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

Loss

halved

Additive Increase/Decrease

n Both increase/ decrease by the same amount

Spring 2018 © CS 438 Staff - University of Illinois 64

User 1�s Allocation

User 2�s
Allocation

Overload

Underutilization

T0

T1

¡ Additive increase
improves fairness

¡ Additive decrease
reduces fairness

Muliplicative
Increase/Decrease

n Both increase/ decrease by the same amount

Spring 2018 © CS 438 Staff - University of Illinois 65

User 1�s Allocation

User 2�s
Allocation

Overload

Underutilization

¡ Additive increase
improves fairness

¡ Additive decrease
reduces fairness

T0

T1

Spring 2018 © CS 438 Staff - University of Illinois 66

Why is AIMD Fair?

n Additive increase gives slope of 1, as throughout increases
n Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

User 1�s Allocation

U
se

r 2
�
s

A
llo

ca
tio

n

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

AIMD Sharing Dynamics

n No congestion à rate increases by one
packet/RTT every RTT

n Congestion à decrease rate by factor 2

Spring 2018 © CS 438 Staff - University of Illinois 67

A Bx1

D E
x2

AIMD Sharing Dynamics

Spring 2018 © CS 438 Staff - University of Illinois 68

A Bx1

D E
x2

0

10

20

30

40

50

60

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

Rates equalize à fair share

Spring 2018 © CS 438 Staff - University of Illinois 69

TCP Start Up Behavior

n How should TCP start sending data?
¡ AIMD is good for channels operating at capacity
¡ AIMD can take a long time to ramp up to full

capacity from scratch

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

It could take a long time
to get started!

Spring 2018 © CS 438 Staff - University of Illinois 70

TCP Start Up Behavior

n How should TCP start sending data?
¡ AIMD is good for channels operating at capacity
¡ AIMD can take a long time to ramp up to full

capacity from scratch
¡ Use Slow Start to increase window rapidly from

a cold start

TCP Start Up Behavior: Slow
Start

n Initialization of the congestion window

¡ Congestion window should start small
n Avoid congestion due to new connections

¡ Start at 1 MSS,
n Initially, CWND is 1 MSS

n Initial sending rate is MSS/RTT

¡ Reset to 1 MSS with each timeout
n timeouts are coarse-grained, ~1/2 sec

Spring 2018 © CS 438 Staff - University of Illinois 71

TCP Start Up Behavior: Slow
Start

n Growth of the congestion window
n Linear growth could be pretty wasteful

¡ Might be much less than the actual bandwidth
¡ Linear increase takes a long time to accelerate

n Start slow but then grow fast
¡ Sender starts at a slow rate
¡ Increase the rate exponentially
¡ Until the first loss event

Spring 2018 © CS 438 Staff - University of Illinois 72

Spring 2018 © CS 438 Staff - University of Illinois 73

Slow Start

n Objective
¡ Determine initial available capacity

n Idea
¡ Begin with CongestionWindow = 1

packet
¡ Double CongestionWindow each RTT

n Increment by 1 packet for each ACK
¡ Continue increasing until loss

Source Destination

…

Slow Start Example

Spring 2018 © CS 438 Staff - University of Illinois 74

1

one pkt time

0R

2

1R

3

4

2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

Another Slow Start Example

Spring 2018 © CS 438 Staff - University of Illinois 75

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:

Slow Start

n Used
¡ When first starting connection
¡ When connection times out

n Why is it called slow-start?
¡ Because TCP originally had no congestion

control mechanism
¡ The source would just start by sending a whole

window�s worth of data

Spring 2018 © CS 438 Staff - University of Illinois 76

TCP Congestion Control

n Maintain threshold window size
¡ Threshold value

n Initially set to maximum window size

n Set to 1/2 of current window on timeout

¡ Use multiplicative increase

n When congestion window smaller than threshold

n Double window for each window ACK�d

n In practice
¡ Increase congestion window by one MSS for each ACK of

new data (or N bytes for N bytes)

Spring 2018 © CS 438 Staff - University of Illinois 77

Spring 2018 © CS 438 Staff - University of Illinois 78

Slow Start

n How long should the exponential
increase from slow start
continue?
¡ Use CongestionThreshold

as target window size
¡ Estimates network capacity
¡ When CongestionWindow

reaches
CongestionThreshold switch
to additive increase

Exponential
�slow start�

Linear
probing

Spring 2018 © CS 438 Staff - University of Illinois 79

Slow Start

n Initial values
¡ CongestionThreshold = 8
¡ CongestionWindow = 1

n Loss after transmission 7
¡ CongestionWindow currently 12
¡ Set Congestionthreshold =

CongestionWindow/2
¡ Set CongestionWindow = 1

Spring 2018 © CS 438 Staff - University of Illinois 80

Slow Start

n Example trace of CongestionWindow

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

n Problem
n Have to wait for timeout
n Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1

Spring 2018 © CS 438 Staff - University of Illinois 81

Fast Retransmit and Fast
Recovery

n Problem
¡ Coarse-grain TCP

timeouts lead to
idle periods

n Solution
¡ Fast retransmit: use

duplicate ACKs to
trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

Spring 2018 © CS 438 Staff - University of Illinois 82

Fast Retransmit and Fast

Recovery

n Send ACK for each segment received

n When duplicate ACK�s received

¡ Resend lost segment immediately

¡ Do not wait for timeout

¡ In practice, retransmit on 3rd duplicate

n Fast recovery

¡ When fast retransmission occurs, skip slow start

¡ Congestion window becomes 1/2 previous

¡ Start additive increase immediately

Spring 2018 © CS 438 Staff - University of Illinois 83

Fast Retransmit and Fast
Recovery

n Results

n Fast Recovery
n Bypass slow start phase
n Increase immediately to one half last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

Spring 2018 © CS 438 Staff - University of Illinois 84

TCP Congestion Window
Trace

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

Co
ng

es
tio

n
W

in
do

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

