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Congestion Control

Overview
Queueing Disciplines
TCP Congestion Control
Congestion Avoidance Mechanisms
Quality of Service
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Today�s Topic: Vacations

UIUC

Chicago

Monterey

San Francisco

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Planning a vacation?
Try a trip to scenic Monterey, California!
Monterey is a mere 3 hops from UIUC.What

happened?
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Congestion Control

reading: Peterson and Davie, Ch. 6

n Basics: 
¡ Problem, terminology, approaches, metrics

n Solutions
¡ Router-based: queueing disciplines
¡ Host-based: TCP congestion control

n Congestion avoidance
¡ DECbit
¡ RED gateways

n Quality of service
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Congestion Control Basics

n Problem
¡ Demand for network resources can grow beyond 

the resources available
¡ Want to provide �fair� amount to each user

n Examples
¡ Bandwidth between Chicago and San Francisco
¡ Bandwidth in a network link
¡ Buffers in a queue



Congestion Collapse

n Definition
¡ Increase in network load results in decrease of useful work 

done

n Many possible causes
¡ Spurious retransmissions of packets still in flight

n Classical congestion collapse
n Solution: better timers and TCP congestion control

¡ Undelivered packets
n Packets consume resources and are dropped elsewhere in 

network
n Solution: congestion control for ALL traffic
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Dealing with Congestion

n Range of solutions 
¡ Congestion control

n Cure congestion when it happens
¡ Congestion avoidance

n Predict when congestion might occur and avoid causing it
¡ Resource allocation

n Prevent congestion from occurring

n Model of network
¡ Packet-switched internetwork (or network)
¡ Connectionless flows (logical channels/connections) 

between hosts
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Congestion Control

n Goal
¡ Effective and fair allocation of resources among 

a collection of competing users
¡ Learning when to say no and to whom

n Resources
¡ Bandwidth
¡ Buffers

n Problem
¡ Contention at routers causes packet loss
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Flow Control vs. Congestion 
Control

n Flow control
¡ Preventing one sender from overrunning 

the capacity of a slow receiver
n Congestion control

¡ Preventing a set of senders from 
overloading the network!



Congestion is Natural

n Because Internet traffic is bursty!
n If two packets arrive at the same time

¡ The node can only transmit one
¡ … and either buffers or drops the other
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Congestion is Natural

n Because Internet traffic is bursty!

n If two packets arrive at the same time

¡ The node can only transmit one

¡ … and either buffers or drops the other

n If many packets arrive in a short period of time

¡ The node cannot keep up with the arriving traffic

¡ Causes delays, and the buffer may eventually overflow
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Load and Delay
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Average
Packet delay

Load

Typical behavior of queueing
systems with bursty arrivals:

Power

Load

Load
Power

Delay
=

�optimal
load�

Ideal: low delays and high utilization
Reality: must balance the two

Maximizing �power� is an example
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Basic Design Choices

n Prevention or Cure?
¡ Pre-allocate resources to avoid congestion
¡ Send data and control congestion if and when it 

occurs
n Possible implementation points

¡ Hosts at the edge of the network 
n Transport protocol

¡ Routers inside the network
n Queueing disciplines

n Underlying service model
¡ Best effort vs. quality of service (QoS)
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Flows

n Sequence of packets sent between 
source/destination pair
¡ Similar to end-to-end abstraction of channel, but seen at 

routers
n Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2



Router State

n Soft state: 
¡ Information about flows
¡ Helps control congestion
¡ Not necessary for correct 

routing

n Hard state:
¡ state used to support 

routing
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Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2
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Congestion Control

n Router role

¡ Controls forwarding and dropping policies

¡ Can send feedback to source

n Host role

¡ Monitors network conditions

¡ Adjusts accordingly

n Routing vs. congestion

¡ Effective adaptive routing schemes

can sometimes help congestion

¡ But not always
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Congestion Control Taxonomy

feedback-based
reservation-based,

implemented by routers,
controlled by rate,

a.k.a. quality of service/QoS

explicit feedback,
implemented by routers,
but not per flow…why?

implicit feedback,
implemented by hosts,
controlled by window

abstraction,
a.k.a. best effort

congestion control



Router-Centric vs. Host-
Centric Flow Control

n Router-centric
¡ Each router takes 

responsibility for 
deciding 
n When packets are 

forwarded
n Which packets are 

to be dropped
n Informing hosts of 

sending limitations

n Host-centric
¡ Hosts observe 

network conditions 
and adjust their 
behavior 
accordingly
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Reservation-Based vs. 
Feedback-Based Flow Control

n Reservation-based
¡ End host asks network 

for capacity at flow 
establishment time

¡ Routers along flow�s 
route allocate 
appropriate resources

¡ If resources are not 
available, flow is 
rejected

¡ Implies the use of 
router-centric 
mechanisms

n Feedback-based
¡ End host begins 

sending without asking 
for capacity

¡ End host adjusts 
sending rate according 
to feedback
n Explicit vs. implicit 

feedback mechanisms
¡ May use router-centric 

(explicit) or host-centric 
(implicit) mechanisms
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Per-flow Congestion Feedback 

n Question
¡ Why is explicit per-flow congestion 

feedback from routers rarely used in 
practice?
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Per-flow Congestion Feedback 

n Problem
¡ Too many sources to track

n Millions of flows may fan in to one router
n Can�t send feedback to all of them

¡ Adds complexity to router
n Need to track more state
n Certainly can�t track state for all sources

¡ Wastes bandwidth: network already congested,
not the time to generate more traffic

¡ Can�t force the sources (hosts) to use feedback
Spring 2018 © CS 438 Staff - University of Illinois 20



Spring 2018 © CS 438 Staff - University of Illinois 21

Window-based vs. Rate-based 
Flow Control

n Remember
¡ Given a RTT and window size W, long term throughput 

rate is 
n Rate = min(link speed, W/RTT)

n Since rate can be controlled by the window size, is 
there really any difference between controlling the 
window size and controlling the rate?

Rate

W
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Rate Control

n Question
¡ Why consider rate control?

n Problems
¡ Buffer space (window size) is

an intrinsic physical quantity
¡ Can provide rate control with 

window control
¡ Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled
transmissions

rate-controlled
transmissions

Answer
Want rate control 
when granularity of 
averaging must be 
smaller than RTT
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Criticisms of Resource 

Allocation

n Example

¡ Divide 10 Gbps bandwidth out of UIUC

n Case 1: reserve whatever you want

¡ Users� line of thought

n On average, I don�t need much bandwidth, but when 

my personal Web crawler goes to work, I need at least 

100 Mbps, so I�ll reserve that much.

¡ Result

n 100 users consume all bandwidth, all others get 0
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Criticisms of Resource 
Allocation

n Example
¡ Divide 10 Gbps bandwidth out of UIUC

n Case 2: fair/equitable reservations
¡ 35,000 students + 5,000 faculty and staff
¡ Each user gets 250 kbps, almost 5x a modem!
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Resource Allocation

n Back to the air travel analogy
¡ Daily Chicago to San Francisco flight, 198 seats
¡ Case 1: reserve whatever you want

n 198 of us get seats.  I�m Gold...are you?

¡ Case 2: fair/equitable reservations
n 2,000,000 possible customers
n 0.000099 seats per customer per flight
n Disclaimer: 

the passenger assumes all risks and damages
related to unsuccessful reassembly in Chicago
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Window Size

Source DestinationC

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C
Delay

WRTT/2

Power = throughput/delay

W
RTT*C



Fairness

n Goals
¡ Allocate resources �fairly�
¡ Isolate ill-behaved users
¡ Still achieve statistical multiplexing

n One flow can fill entire pipe if no contenders
n Work conserving à scheduler never idles link if it has a 

packet

n At what granularity?
¡ Flows, connections, domains?
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What�s Fair?

Flow A

Flow B Flow C Flow D

This is the so-
called �max-min 

fair� rate 
allocation.  The 
minimum rate is 

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd = 
3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2
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Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth
2. No other scheme with 1 has higher min bandwidth
3. 2 remains true recursively on removing minimal 

user µI = MIN(µfair, ri)



Max-Min Fairness: Example

n Capacity(C) = 10
¡ 3 Flows:    r1 = 8, r2 = 6, r3 = 2

n C/3 = 3.33 ®
¡ Can service all of r3
¡ Remove r3 from the accounting: C = C – r3 = 8; N = 2

n C/2 = 4 ®
¡ Can�t service all of r1 or r2
¡ So hold them to the remaining fair share: f = 4
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Queueing Disciplines

n Goal
¡ Decide how packets are buffered while waiting 

to be transmitted
¡ Provide protection from ill-behaved flows
¡ Each router MUST implement some queuing 

discipline regardless of what the resource 
allocation mechanism is

n Impact
¡ Directly impacts buffer space usage
¡ Indirectly impacts flow control
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Queueing Disciplines

n Allocate bandwidth
¡ Which packets get transmitted

n Allocate buffer space
¡ Which packets get discarded

n Affect packet latency
¡ When packets get transmitted
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Scheduling Policies

n FIFO (First In First Out) a.k.a. FCFS (First Come 
First Serve)
¡ Service

n In order of arrival to the queue
¡ Management

n Packets that arrive to a full buffer are discarded
n Another option: discard policy determines which packet to 

discard (new arrival or something already queued)
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Scheduling Policies

n FIFO (First In First Out)
¡ Problem 1: send more packets, get more service

n Selfish senders trying to grab as much as they can

n Malicious senders trying to deny service to others

¡ Problem 2: not all packets should be equal
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Scheduling Policies

n FIFO
¡ Does not discriminate between traffic sources
¡ Congestion control left to the sources
¡ Tail drop dropping policy
¡ Fairness for latency
¡ Minimizes per-packet delay
¡ Bandwidth not considered (not good for congestion)
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Scheduling Policies

n Priority Queuing

¡ Classes have different priorities

n May depend on explicit marking or other header info

¡ e.g., IP source or destination, TCP Port numbers, etc.

¡ Service

n Transmit packet from highest priority class with a non-empty 

queue
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Scheduling Policies

n Priority Queuing
¡ Isolation for the high-priority traffic

n Almost like it has a dedicated link
n Except for the (small) delay for packet transmission

¡ High-priority packet arrives during transmission of low-priority
¡ Router completes sending the low-priority traffic first
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Scheduling Policies

n Priority Queueing Versions
¡ Preemptive

n Postpone low-priority processing if high-priority packet 
arrives

¡ Non-preemptive
n Any packet that starts getting processed finishes 

before moving on

n Limitation
¡ May starve lower priority flows
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Scheduling Policies

n Round Robin
¡ Each flow gets its own queue
¡ Circulate through queues, process one packet (if 

queue non-empty), then move to next queue
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Scheduling Policies

n Fair Queueing (FQ)
¡ Explicitly segregates 

traffic based on flows

¡ Ensures no flow 
captures more than its 
share of the capacity

¡ Fairness for 
bandwidth

¡ Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-
Robin 
service

Each flow is guaranteed ¼ 
of capacity
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Fair Queueing with Variable 
Packet Length

n How should we implement FQ if packets are not all 
the same length?
¡ Bit-by-bit round-robin

n Not feasible to implement, must use packet scheduling
n Solution: approximate

4 8

6 10

44 4 5

?
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Fair Queueing with Variable 

Packet Length

n Idea

¡ Let S
i
= amount of service flow i has received so far

¡ Always serve a flow with minimum value of S
i

n Can also use minimum (S
i
+ next packet length)

¡ Upon serving a packet of length P from flow i, update:

n S
i
= S

i
+ P

n Never leave the link idle if there is a packet to send

¡ Work conserving

n A source will gets its fair share of the bandwidth

n Unused bandwidth will be evenly divided between other 

sources
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Fair Queueing with Variable 
Packet Length

n Problem
¡ A flow resumes sending packets after being quiet for a 

long time
n Effect

¡ Such a flow could be considered to have �saved up 
credit�

¡ Can lock out all other flows until credits are level again
n Solution 

¡ Enforce �use it or lose it policy�
n Compute Smin = min(Si such that queue i is not empty)
n If queue j is empty, set Sj = Smin
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Fair Queueing with Variable 
Packet Length

n Problem
¡ A flow resumes sending packets after being quite for a 

long time
n Effect

¡ Such a flow could be considered to have �saved up 
credit�

¡ Can lock out all other flows until credits are level again
n Solution 

¡ Enforce �use it or lose it policy�
n Compute Smin = min(Si such that queue i is not empty)
n If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet 

that arrives on each flow
• Treat all Fi as timestamps
• Next packet to transmit is one 

with lowest timestamp



Spring 2018 © CS 438 Staff - University of Illinois 46

Extension: Weighted Fair 
Queueing

n Extend fair queueing 
¡ Notion of importance for each flow

n Suppose flow i has weight wi
¡ Example: wi could be the fraction of total 

service that flow i is targeted for

n Need only change basic update to 
¡ Si = Si + P/wi



Fair Queuing Tradeoffs

n FQ can control congestion by monitoring flows
¡ Non-adaptive flows can still be a problem – why?

n Complex state
¡ Must keep queue per flow

n Hard in routers with many flows (e.g., backbone routers)
n Flow aggregation is a possibility (e.g. do fairness per 

domain)

n Complex computation
¡ Classification into flows may be hard
¡ Must keep queues sorted by finish times
¡ Changes whenever the flow count changes
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Fair Queueing

n Question
¡ What makes up a flow for fair queueing in the 

Internet?
n Considerations

¡ Too many resources to have separate 
queues/variables for host-to-host flows

¡ Scale down number of flows
¡ Typically just based on inputs

n e.g., share outgoing STS-12 between incoming ISP�s
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TCP Congestion Control



Host Solutions

n Host has very little information
¡ Assumes  best-effort network
¡ Acts independently of other hosts

n Host actions
¡ Reduce transmission rate below 

congestion threshold
¡ Continuously monitor network for signs of 

congestion
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Detecting Congestion

n How can a TCP sender determine that the network 
is under stress? 

n Network could tell it (ICMP Source Quench)
¡ Risky, because during times of overload the signal itself 

could be dropped (and add to congestion)!

n Packet delays go up (knee of load-delay curve)
¡ Tricky: noisy signal (delay often varies considerably) 

n Packet loss
¡ Fail-safe signal that TCP already has to detect

¡ Complication: non-congestive loss (checksum errors)
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TCP Congestion Control

n Idea
¡ Assumes best-effort network 

n FIFO or FQ
¡ Each source determines network capacity for itself
¡ Implicit feedback
¡ ACKs pace transmission (self-clocking)

n Challenge
¡ Determining initial available capacity
¡ Adjusting to changes in capacity in a timely manner
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TCP Congestion Control

n Basic idea
¡ Add notion of congestion window
¡ Effective window is smaller of

n Advertised window (flow control)
n Congestion window (congestion control)

¡ Changes in congestion window size
n Slow increases to absorb new bandwidth
n Quick decreases to eliminate congestion
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TCP Congestion Control

n Specific strategy
¡ Self-clocking

n Send data only when outstanding data ACK�d
n Equivalent to send window limitation mentioned

receiversender
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TCP Congestion Control

n Specific strategy
¡ Self-clocking

n Send data only when outstanding data ACK�d
n Equivalent to send window limitation mentioned

¡ Growth
n Add one maximum segment size (MSS) per 

congestion window of data ACK�d
n It�s really done this way, at least in Linux:

¡ see tcp_cong_avoid in tcp_input.c.  
¡ Actually, every ack for new data is treated as an MSS 

ACK�d
n Known as additive increase
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TCP Congestion Control

n Specific strategy (continued)
¡ Decrease

n Cut window in half when timeout occurs
n In practice, set window = window /2 
n Known as multiplicative decrease

¡ Additive increase, multiplicative decrease 
(AIMD)



Additive Increase/ 
Multiplicative Decrease

n Objective
¡ Adjust to changes in available capacity

n Basic idea
¡ Consequences of over-sized window much worse than 

having an under-sized window
n Over-sized window: packets dropped and retransmitted
n Under-sized window: somewhat lower throughput
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Additive Increase/ 
Multiplicative Decrease

n Tools
¡ React to observance of congestion
¡ Probe channel to detect more resources

n Observation
¡ On notice of congestion

n Decreasing too slowly will not be reactive enough
¡ On probe of network

n Increasing too quickly will overshoot limits
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Additive Increase/ 
Multiplicative Decrease

n New TCP state variable
¡ CongestionWindow

n Similar to AdvertisedWindow for flow control
¡ Limits how much data source can have in transit

n MaxWin = MIN(CongestionWindow, 
AdvertisedWindow)

n EffWin = MaxWin - (LastByteSent -
LastByteAcked)

n TCP can send no faster then the slowest component, 
network or destination

n Idea
¡ Increase CongestionWindow when congestion goes 

down
¡ Decrease CongestionWindow when congestion goes up
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Additive Increase/ 
Multiplicative Decrease

n Question
¡ How does the source determine whether or not 

the network is congested?

n Answer
¡ Timeout signals packet loss
¡ Packet loss is rarely due to transmission error 

(on wired lines)
¡ Lost packet implies congestion!
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Additive Increase/ 
Multiplicative Decrease

n Algorithm
¡ Increment CongestionWindow by one 

packet per RTT 
n Linear increase

¡ Divide CongestionWindow by two 
whenever a timeout occurs
n Multiplicative decrease

n In practice
¡ increment a little for each ACK

Inc = MSS * MSS/CongestionWindow
CongestionWindow += Inc

Source Destination

…



AIMD – Sawtooth Trace

n Packet loss is seen as sign of congestion and 
results in a multiplicative rate decrease 
¡ Factor of 2

n TCP periodically probes for available bandwidth by 
increasing its rate
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Additive Increase/Decrease

n Both increase/ decrease by the same amount
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User 1�s Allocation

User 2�s 
Allocation

Overload

Underutilization

T0

T1

¡ Additive increase 
improves fairness

¡ Additive decrease 
reduces fairness



Muliplicative 
Increase/Decrease

n Both increase/ decrease by the same amount
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User 1�s Allocation

User 2�s 
Allocation

Overload

Underutilization

¡ Additive increase 
improves fairness

¡ Additive decrease 
reduces fairness

T0

T1



Spring 2018 © CS 438 Staff - University of Illinois 66

Why is AIMD Fair?

n Additive increase gives slope of 1, as throughout increases
n Multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

User 1�s Allocation

U
se

r 2
�
s 

A
llo

ca
tio

n

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



AIMD Sharing Dynamics

n No congestion à rate increases by one 
packet/RTT every RTT

n Congestion à decrease rate by factor 2
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AIMD Sharing Dynamics
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TCP Start Up Behavior

n How should TCP start sending data?
¡ AIMD is good for channels operating at capacity
¡ AIMD can take a long time to ramp up to full 

capacity from scratch

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
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Time (seconds)
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10.0

It could take a long time 
to get started!
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TCP Start Up Behavior

n How should TCP start sending data?
¡ AIMD is good for channels operating at capacity
¡ AIMD can take a long time to ramp up to full 

capacity from scratch
¡ Use Slow Start to increase window rapidly from 

a cold start



TCP Start Up Behavior: Slow 
Start

n Initialization of the congestion window

¡ Congestion  window should start small
n Avoid congestion due to new connections

¡ Start at 1 MSS, 
n Initially, CWND is 1 MSS

n Initial sending rate is MSS/RTT

¡ Reset to 1 MSS with each timeout 
n timeouts are coarse-grained, ~1/2 sec
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TCP Start Up Behavior: Slow 
Start

n Growth of the congestion window
n Linear growth could be pretty wasteful

¡ Might be much less than the actual bandwidth
¡ Linear increase takes a long time to accelerate

n Start slow but then grow fast
¡ Sender starts at a slow rate
¡ Increase the rate exponentially
¡ Until the first loss event
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Slow Start

n Objective
¡ Determine initial available capacity

n Idea
¡ Begin with CongestionWindow = 1 

packet
¡ Double CongestionWindow each RTT

n Increment by 1 packet for each ACK
¡ Continue increasing until loss

Source Destination

…



Slow Start Example
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Another Slow Start Example
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Slow Start

n Used
¡ When first starting connection
¡ When connection times out

n Why is it called slow-start? 
¡ Because TCP originally had no congestion 

control mechanism
¡ The source would just start by sending a whole 

window�s worth of data
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TCP Congestion Control

n Maintain threshold window size
¡ Threshold value

n Initially set to maximum window size

n Set to 1/2 of current window on timeout

¡ Use multiplicative increase

n When congestion window smaller than threshold

n Double window for each window ACK�d

n In practice
¡ Increase congestion window by one MSS for each ACK of 

new data (or N bytes for N bytes)
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Slow Start

n How long should the exponential 
increase from slow start 
continue?
¡ Use CongestionThreshold 

as target window size
¡ Estimates network capacity
¡ When CongestionWindow 

reaches
CongestionThreshold switch 
to additive increase

Exponential
�slow start�

Linear 
probing
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Slow Start

n Initial values
¡ CongestionThreshold = 8
¡ CongestionWindow = 1

n Loss after transmission 7
¡ CongestionWindow currently 12
¡ Set Congestionthreshold = 

CongestionWindow/2
¡ Set CongestionWindow = 1
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Slow Start

n Example trace of CongestionWindow
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n Problem
n Have to wait for timeout
n Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1
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Fast Retransmit and Fast 
Recovery

n Problem
¡ Coarse-grain TCP 

timeouts lead to 
idle periods

n Solution
¡ Fast retransmit: use 

duplicate ACKs to 
trigger 
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver
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Fast Retransmit and Fast 

Recovery

n Send ACK for each segment received

n When duplicate ACK�s received

¡ Resend lost segment immediately

¡ Do not wait for timeout

¡ In practice, retransmit on 3rd duplicate

n Fast recovery

¡ When fast retransmission occurs, skip slow start

¡ Congestion window becomes 1/2 previous

¡ Start additive increase immediately
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Fast Retransmit and Fast 
Recovery

n Results

n Fast Recovery
n Bypass slow start phase
n Increase immediately to one half last successful 
CongestionWindow (ssthresh)
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TCP Congestion Window 
Trace
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